Rhizosphere bacteria, the main functional microorganisms inhabiting the roots of terrestrial plants, play important roles in regulating plant growth and environmental stress resistance. However, limited information is available regarding changes occurring within the structure of the root microbial community and the response mechanisms of host plants that improve adaptability to drought stress. In this study, we conducted an experiment on two sugarcane varieties with different drought tolerance levels under drought and control treatments and analyzed the rhizosphere bacterial communities using 16S rRNA high-throughput sequencing. Correlation analysis results clarified the influence of various factors on the rhizosphere bacterial community structure. Drought stress reduced the diversity of the bacterial community in the rhizosphere of sugarcane. Interestingly, the bacterial community of the drought-sensitive sugarcane cultivar GT39 changed more than that of the drought-tolerant cultivar ZZ9. In addition, ZZ9 had a high abundance of drought-resistant bacteria in the rhizosphere under optimal soil water conditions, whereas GT39 accumulated a large number of drought-resistant bacteria only under drought stress. GT39 mainly relied on Actinobacteria in its response to drought stress, and the abundance of this phylum was positively correlated with soil acid phosphatase and protease levels. In contrast, ZZ9 mainly relied on Bacilli in its response to drought stress, and the abundance of this class was positively correlated with only soil acid phosphatase levels. In conclusion, drought stress can significantly reduce the bacterial diversity and increase the abundance of drought-resistant bacteria in the sugarcane rhizosphere. The high abundance of drought-resistant bacteria in the rhizosphere of drought-tolerant cultivars under non-drought conditions is an important factor contributing to the high drought adaptability of these cultivars. Moreover, the core drought-resistant bacteria of the sugarcane rhizosphere and root exudates jointly affect the resistance of sugarcane to drought.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8568056PMC
http://dx.doi.org/10.3389/fmicb.2021.732989DOI Listing

Publication Analysis

Top Keywords

drought stress
24
drought-resistant bacteria
20
bacterial community
16
rhizosphere bacterial
12
abundance drought-resistant
12
drought
11
rhizosphere
9
stress
8
high abundance
8
bacteria rhizosphere
8

Similar Publications

Aquaporins are widely present in the plant kingdom and play important roles in plant response to abiotic adversity stresses such as water and temperature extremes. In this study, we investigated the regulatory role of NTPIP2;4 on drought tolerance in tobacco at physiological and transcriptional levels. In this experiment, we constructed an NtPIP2;4 overexpression vector and genetically transformed tobacco variety 'K326' to investigate the mechanism of NtPIP2;4 gene in regulating drought tolerance in tobacco at physiological and transcriptomic levels.

View Article and Find Full Text PDF

TaSnRK3.23B, a CBL-interacting protein kinase of wheat, confers drought stress tolerance by promoting ROS scavenging in Arabidopsis.

BMC Plant Biol

January 2025

Institute of Food Crops, Hubei Academy of Agricultural Sciences/Key Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs/Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Wuhan, 430064, China.

Background: Sucrose non-fermenting-1-related protein kinases (SnRKs) have been implicated in plant growth and stress responses. Although SnRK3.23 is known to be involved in drought stress, the underlying mechanism of resistance differs between Arabidopsis and rice, and little is known about its function in wheat.

View Article and Find Full Text PDF

Environmental gradients shape genetic variation in the desert moss, Syntrichia caninervis Mitt. (Pottiaceae).

Sci Rep

January 2025

Department of Biological Sciences, California State University Los Angeles, 5151 State University Dr, Los Angeles, CA, 90032, USA.

The moss Syntrichia caninervis Mitt. is distributed throughout drylands globally, and often anchors ecologically significant communities known as biological soil crusts (biocrusts). The species occupies a variety of dryland habitats with varying levels of drought and temperature stress, suggesting the potential for ecological specialization within S.

View Article and Find Full Text PDF

The TIFY Transcription Factor ZmJAZ13 Enhances Plant Tolerance to Drought and Salt Stress by Interacting with ZmbHLH161 and ZmA0A1D6GLB9.

Plant Sci

January 2025

Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China. Electronic address:

The JAZ protein family, serving as a key negative regulator in the jasmonic acid signaling pathway, interacts with transcription factors to play an essential role in plant growth, development, and stress responses. However, minimal research has focused on the role of JAZ transcription factors in regulating the growth, development, and stress responses of maize. In this study, we cloned the JAZ gene ZmJAZ13 from maize (Zea mays L.

View Article and Find Full Text PDF

Calcium-dependent protein kinases CPK3/4/6/11 and 27 respond to osmotic stress and activate SnRK2s in Arabidopsis.

Dev Cell

January 2025

Key Laboratory of Plant Carbon Capture, Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China; University of Chinese Academy of Sciences, Beijing 100049, China. Electronic address:

Drought and salinity are significant environmental threats that cause hyperosmotic stress in plants, which respond with a transient elevation of cytosolic Ca and activation of Snf1-related protein kinase 2s (SnRK2s) and downstream responses. The exact regulators decoding Ca signals to activate downstream responses remained unclear. Here, we show that the calcium-dependent protein kinases CPK3/4/6/11 and 27 respond to moderate osmotic stress and dehydration to activate SnRK2 phosphorylation in Arabidopsis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!