Chemically Synthesized Lipid A as an Adjuvant to Augment Immune Responses to Type B Conjugate Vaccine.

Front Pharmacol

Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research, and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health, and Nutrition (NIBIOHN), Ibaraki, Japan.

Published: October 2021

We previously identified spp. as a commensal bacterium that resides in lymphoid tissues, including Peyer's patches. We found that -derived lipopolysaccharide acted as a weak agonist of Toll-like receptor four due to the unique structure of lipid A, which lies in the core of lipopolysaccharide. This feature allowed the use of chemically synthesized lipid A as a safe synthetic vaccine adjuvant that induces Th17 polarization to enhance systemic IgG and respiratory IgA responses to T-cell-dependent antigens (e.g., ovalbumin and pneumococcal surface protein A) without excessive inflammation. Here, we examined the adjuvant activity of lipid A on a influenzae B conjugate vaccine that contains capsular polysaccharide polyribosyl ribitol phosphate (PRP), a T-cell-independent antigen, conjugated with the T-cell-dependent tetanus toxoid (TT) antigen (i.e., PRP-TT). When mice were subcutaneously immunized with PRP alone or mixed with TT, lipid A did not affect PRP-specific IgG production. In contrast, PRP-specific serum IgG responses were enhanced when mice were immunized with PRP-TT, but these responses were impaired in similarly immunized T-cell-deficient nude mice. Furthermore, TT-specific-but not PRP-specific-T-cell activation occurred in mice immunized with PRP-TT together with lipid A. In addition, coculture with lipid A promoted significant proliferation of and enhanced antibody production by B cells. Together, these findings suggest that lipid A exerts an adjuvant activity on thymus-independent Hib polysaccharide antigen in the presence of a T-cell-dependent conjugate carrier antigen.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8569242PMC
http://dx.doi.org/10.3389/fphar.2021.763657DOI Listing

Publication Analysis

Top Keywords

chemically synthesized
8
lipid
8
synthesized lipid
8
conjugate vaccine
8
adjuvant activity
8
mice immunized
8
immunized prp-tt
8
adjuvant
4
lipid adjuvant
4
adjuvant augment
4

Similar Publications

The side-chain directions in nonfullerene acceptors (NFAs) strongly influence the intermolecular interactions in NFAs; however, the influence of these side chains on the morphologies and charge carrier dynamics of Y6-based acceptors remains underexplored. In this study, we synthesize four distinct Y6-based acceptors, i.e.

View Article and Find Full Text PDF

Silica nano/microparticles have generated significant interest for the past decades, emerging as a versatile material with a wide range of applications in photonic crystals, bioimaging, chemical sensors, and catalysis. This study focused on synthesizing silica nano/microparticles ranging from 20 nm to 1.2 μm using the Stöber and modified Stöber methods.

View Article and Find Full Text PDF

Mononuclear non-heme iron enzymes catalyze a wide array of important oxidative transformations. They are correspondingly diverse in both structure and mechanism. Despite significant evolutionary distance, it is becoming increasingly apparent that these enzymes nonetheless illustrate a compelling case of mechanistic convergence the formation of peroxo species bridging metal and substrate.

View Article and Find Full Text PDF

Long-range ordered high-entropy intermetallics enable stable and efficient hydrogen evolution in seawater.

Chem Commun (Camb)

January 2025

Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, P. R. China.

Long-range ordered high-entropy intermetallics (HEIs) were synthesized a thermodynamically-driven atomic ordering strategy. The (FeCoNi)(RuPt) HEI achieves 200 mA cm at an overpotential of 56 mV and a remarkable low Tafel slope of 50.4 mV dec in alkaline seawater.

View Article and Find Full Text PDF

Pd-Catalyzed Asymmetric Synthesis of Chiral 2-Trifluoromethyl-4-(indol-3-yl)-4-chromene Derivatives.

J Org Chem

January 2025

State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China.

This paper presents a new strategy for the construction of the chiral 4-chromene skeleton. A series of chiral 2-trifluoromethyl-4-(indol-3-yl)-4-chromenes were synthesized in moderate to good yields (60-92%) with excellent enantioselectivity (up to 97% ee) through the palladium-catalyzed asymmetric condensation of 2-chromenes and indoles. These trifluoromethylated, stereochemically rich building blocks hold potential value in medicinal chemistry.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!