More than a century after discovering NAD, information is still evolving on the role of this molecule in health and diseases. The biological functions of NAD and NAD precursors encompass pathways in cellular energetics, inflammation, metabolism, and cell survival. Several metabolic and neurological diseases exhibit reduced tissue NAD levels. Significantly reduced levels of NAD are also associated with aging, and enhancing NAD levels improved healthspan and lifespan in animal models. Recent studies suggest a causal link between senescence, age-associated reduction in tissue NAD and enzymatic degradation of NAD. Furthermore, the discovery of transporters and receptors involved in NAD precursor (nicotinic acid, or niacin, nicotinamide, and nicotinamide riboside) metabolism allowed for a better understanding of their role in cellular homeostasis including signaling functions that are independent of their functions in redox reactions. We also review studies that demonstrate that the functional effect of niacin is partially due to the activation of its cell surface receptor, GPR109a. Based on the recent progress in understanding the mechanism and function of NAD and NAD precursors in cell metabolism, new strategies are evolving to exploit these molecules' pharmacological potential in the maintenance of metabolic balance.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8649045 | PMC |
http://dx.doi.org/10.1016/j.metabol.2021.154923 | DOI Listing |
Acta Pharm Sin B
December 2024
Metabolic Disease Research Center, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou 450052, China.
Reductive stress, characterized by rising level of NADH (nicotinamide adenine dinucleotide) for a status of NADH/NAD ratio elevation, has been reported in obesity and cancer. However, the mechanism and significance of reductive stress remain to be established in obesity. This perspective is prepared to address the issue with new insights published recently.
View Article and Find Full Text PDFExpert Rev Proteomics
January 2025
Research Unit for Molecular Medicine, Department of Clinical Medicine, Faculty of Health, Aarhus University, Denmark.
Introduction: Mitochondria contain multiple pathways including energy metabolism and several signaling and synthetic pathways. Mitochondrial proteomics is highly valuable for studying diseases including inherited metabolic disorders, complex and common disorders like neurodegeneration, diabetes and cancer, since they all to some degree have mitochondrial underpinnings.
Areas Covered: The main mitochondrial functions and pathways are outlined and systematic protein lists are presented.
EMBO J
January 2025
Department of Molecular and Cellular Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX, 77030, USA.
Mitochondrial metabolism requires the chaperoned import of disulfide-stabilized proteins via CHCHD4/MIA40 and its enigmatic interaction with oxidoreductase Apoptosis-inducing factor (AIF). By crystallizing human CHCHD4's AIF-interaction domain with an activated AIF dimer, we uncover how NADH allosterically configures AIF to anchor CHCHD4's β-hairpin and histidine-helix motifs to the inner mitochondrial membrane. The structure further reveals a similarity between the AIF-interaction domain and recognition sequences of CHCHD4 substrates.
View Article and Find Full Text PDFJ Adv Res
January 2025
The Center for Biomedical Research, Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China. Electronic address:
Background: The balance of redox states is crucial for maintaining physiological homeostasis. For decades, the focus has been mainly on the concept of oxidative stress, which is involved in the mechanism of almost all diseases. However, robust evidence has highlighted that reductive stress, the other side of the redox spectrum, plays a pivotal role in the development of various diseases, particularly those related to metabolism and cardiovascular health.
View Article and Find Full Text PDFJ Nutr
January 2025
Department of Animal Sciences, North Carolina State University, Raleigh, NC 27695, USA. Electronic address:
Background: Supplementing choline and docosahexaenoic acid (DHA) to pregnant gilts modified fetal pig hepatic global DNA methylation induced by gestational malnutrition, suggesting that gene expression and regulation and its associated metabolic pathways are affected in the liver of offspring during growth and development.
Objective: To investigate the effect of maternal supplementation of choline, DHA and their interaction on hepatic mRNA expression, miRNA regulation and metabolic pathways in the fetal pigs born to malnourished mothers.
Methods: The abundance of mRNA and miRNA was profiled in fetal liver from sows with undernutrition supplemented with choline and DHA in a 2 × 2 factorial design.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!