Phytotoxic effects of plastic pollution in crops: what is the size of the problem?

Environ Pollut

Programa de Pós-Graduação Em Botânica, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, 91501-970, Brazil; Centro de Estudos Limnológicos, Costeiros e Marinhos, Campus Litoral Norte, Universidade Federal Do Rio Grande Do Sul, Imbé, RS, 95625-000, Brazil; Departamento Interdisciplinar, Campus Litoral Norte, Universidade Federal Do Rio Grande Do Sul, Tramandaí, RS, 95590-000, Brazil. Electronic address:

Published: January 2022

Plastic pollution is one of the most impactful human interferences in our planet. Fragmentation of plastic leads to nano- and microplastics (NP/MP) formation, which accumulate in agricultural lands, representing an increasing risk for crop production and food safety. It has been shown that MP promote damage in plant tissues by several direct and indirect ways, and that NP can enter the tissues/cells and accumulate in edible organs. Investigation of the phytotoxic effects of NP/MP in plants started only in 2016, with most of the studies performed with crops. Since contradictory results are often observed, it is important to review the literature in order to identify robust effects and their possible mechanisms. In this review, we discuss the potential of NP/MP in damaging crop species, with focus on the physiological changes described in the literature. We also performed scientometrics analyses on research papers in this field during 2016-2021, to reveal the research situation of phytotoxic effects of plastic pollution in crops. Our review is as a starting point to help identify gaps and future directions in this important, emerging field.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envpol.2021.118420DOI Listing

Publication Analysis

Top Keywords

phytotoxic effects
12
plastic pollution
12
effects plastic
8
pollution crops
8
plastic
4
crops size
4
size problem?
4
problem? plastic
4
pollution impactful
4
impactful human
4

Similar Publications

The increasing level of cadmium (Cd) contamination in soil due to anthropogenic actions is a significant problem. This problem not only harms the natural environment, but it also causes major harm to human health via the food chain. The use of chelating agent is a useful strategy to avoid heavy metal uptake and accumulation in plants.

View Article and Find Full Text PDF

Melatonin increases Pb tolerance in P. ovata seedlings via the regulation of growth and stress-related phytohormones, ROS scavenging and genes responsible for melatonin synthesis, metal chelation, and stress defense. Lead (Pb) is a highly toxic heavy metal that accumulates in plants through soil and air contamination and impairs its plant growth and development.

View Article and Find Full Text PDF

Can Spp. Contribute to the Bioremediation and Biostimulation of Plants in Soil Contaminated with Herbicides?

ACS Omega

January 2025

Laboratory of Biological Control of Plant Disease and Laboratory of Plant Biotechnology, Institute of Biotechnology, University of Caxias do Sul, Rua Francisco Getúlio Vargas, 1130, Petrópolis, Caxias do Sul, Rio Grande do Sul 95070-560, Brazil.

This work aimed to evaluate the potential of spp. in the bioremediation of herbicides and biostimulation of plants in herbicide-contaminated soils. In the first phase, the experiment followed a completely randomized design in a 4 × 3 × 4 factorial scheme with five replications, four strains of spp.

View Article and Find Full Text PDF

Leaf essential oils (EOs) of seven Eucalyptus species from southern Tunisia (E. gracilis, E. lesouefii, E.

View Article and Find Full Text PDF

24-epibrassinolide regulates oxytetracycline-induced phytotoxicity and its detoxification mechanism.

Ecotoxicol Environ Saf

January 2025

Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China. Electronic address:

Oxytetracycline (OTC), a crop-absorbable antibiotic, poses a health risk to humans through the food chain. Conversely, 24-epibrassinolide (EBL), a plant growth hormone, mitigates the toxic effects of various pollutants on plants. However, the mechanism by which exogenous EBL affects the growth of rape seedlings exposed to OTC remains largely unknown.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!