Lipid-porphyrin conjugates are considered nowadays as promising building blocks for the conception of drug delivery systems with multifunctional properties such as photothermal therapy (PTT), photodynamic therapy (PDT), phototriggerable release, photoacoustic and fluorescence imaging. For this aim, we have recently synthesized a new lipid-porphyrin conjugate named PhLSM. This was obtained by coupling pheophorbide-a (Pheo-a), a photosensitizer derived from chlorophyll-a, to egg lyso-sphingomyelin. The pure PhLSMs were able to self-assemble into vesicle-like structures that were however not stable and formed aggregates with undefined structures due to the mismatch between the length of the alkyl chain in sn-1 position and the adjacent porphyrin. Herein, stable PhLSMs lipid bilayers were achieved by mixing PhLSMs with cholesterol which exhibits a complementary packing parameter. The interfacial behavior as well as the fine structures of their equimolar mixture was studied at the air/buffer interface by the mean of Langmuir balance and x-ray reflectomerty (XRR) respectively. Our XRR analysis unraveled the monolayer thickening and the increase in the lateral ordering of PhLSM molecules. Interestingly, we could prepare stable vesicles with this mixture that encapsulate hydrophilic fluorescent probe. The light-triggered release kinetics and the photothermal conversion were studied. Moreover, the obtained vesicles were photo-triggerable and allowed the release of an encapsulated cargo in an ON-OFF fashion.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbamem.2021.183812DOI Listing

Publication Analysis

Top Keywords

lipid-porphyrin conjugate
8
photo-triggerable liposomes
4
liposomes based
4
based lipid-porphyrin
4
conjugate cholesterol
4
cholesterol combination
4
combination formulation
4
formulation mechanistic
4
mechanistic study
4
study monolayers
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!