A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

All-natural and biocompatible cellulose nanocrystals films with tunable supramolecular structure. | LitMetric

All-natural and biocompatible cellulose nanocrystals films with tunable supramolecular structure.

Int J Biol Macromol

Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China. Electronic address:

Published: December 2021

Herein, nanocomposites films were prepared via the facile casting method by incorporating cellulose nanocrystals (CNCs) with arabinogalactan (AG), galactomannan (GM) or konjac glucomannan (KGM) respectively. The introduced polysaccharides maintained the transparency of CNCs films and promoted the UV blocking properties. In addition, mechanical strength of the nanocomposite films was greatly improved after the combination of polysaccharides. The interactions of hydroxyl-abundant macromolecules, smoother and tighter morphological structures, as well as the disturbed crystal structure were proved to be responsible for the improved properties. Hydrophilic lattice planes of cellulose crystallites were determined to interact with polysaccharides resulting in lower crystallite sizes and crystallinity. The cell culture assay revealed that the films had no cytotoxicity and presented a satisfactory cytocompatibility, because of the polysaccharides from plant cell walls introduced into the films. Therefore, the biocompatible nanocomposites films can be tuned by the addition of polysaccharides, which show great potentials for materials modification in optical, packaging and biomedical fields.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2021.10.191DOI Listing

Publication Analysis

Top Keywords

cellulose nanocrystals
8
nanocomposites films
8
films
7
polysaccharides
5
all-natural biocompatible
4
biocompatible cellulose
4
nanocrystals films
4
films tunable
4
tunable supramolecular
4
supramolecular structure
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!