Biochar-based nanocomposite from waste tea leaf for toxic dye removal: From facile fabrication to functional fitness.

Chemosphere

Environmicrobiology, Ecotoxicology and Ecotechnology Research Laboratory, Department of Ecological Studies, University of Kalyani, Kalyani, Nadia, 741235, West Bengal, India; International Centre for Ecological Engineering, University of Kalyani, Kalyani, 741235, West Bengal, India.

Published: March 2022

The present study utilized discarded tea leaf waste to produce 'Tea leaf biochar' (TLB) as the functional matrix for the fabrication of hybrid nanocomposite (nAg-TC), with colloidal deposition of silver nanoparticles (nAg) via modified chemical co-precipitation, for treatment of dye-laden wastewater. The chemical composition, physicochemical properties, and morphology of nAg-TC, and active surface functional groups involved in adsorption were identified using BET, FESEM-EDX, FTIR, TGA, XPS, and XRD. The nAg-TC matrix was found to be heterogeneous, mesoporous, thermostable, with rich in active surface functional groups (-OH, =NH, =CH, CC, CO, CN, and CC), and nAg as a dopant material. The dye adsorption results indicated the maximum removal efficiency (RhB = 95.89%, CR = 94.10%) at 300 K for rhodamine B (RhB) and Congo red (CR) concentrations of 25 mg L and 22.5 mg L, respectively. The present investigation agreed with Freundlich isotherm (R:0.991; R:0.993) and pseudo-second order kinetic (R:0.999; R:0.999) model, indicating overall adsorption of RhB and CR through spontaneous and exothermic chemisorption on the heterogeneous surface of nAg-TC. The mechanism of RhB and CR adsorption was complex where nAg-TC, possessing the synergistic effects of TLB and nAg, showed surface complexation, electrostatic attraction, and H-bonding, leading to chemisorption. Study showed excellent reusability of spent nAg-TC, and commendable treatment efficiency for dye-laden real industrial effluents. The study exhibits substantial techno-economic feasibility of adsorbent and translates the principles of circular economy into synthesis of value-added products through sustainable management of biowaste and bioresource.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2021.132788DOI Listing

Publication Analysis

Top Keywords

tea leaf
8
active surface
8
surface functional
8
functional groups
8
nag-tc
6
biochar-based nanocomposite
4
nanocomposite waste
4
waste tea
4
leaf toxic
4
toxic dye
4

Similar Publications

Background: Today, customers pay more attention to the feed composition and carcasses of poultry, and the interest in using natural and safe compounds such as medicinal plants and their extracts in animal feed is increasing.

Objectives: The present experiment was conducted to assess the effect of green tea (Camellia sinensis) and mulberry (Morus alba) leaves powder on the meat quality, intestinal microbiology and serum biochemical parameters in broilers.

Methods: The experiment was conducted with 648 one-day-old Ross 308 broiler male chicks with a factorial arrangement including three levels of green tea powder (GTP) and three levels of mulberry leaf powder (MLP), with nine treatments and six replications in a completely randomized design for 42 days.

View Article and Find Full Text PDF

We here analyzed changes in the proportion and content of chiral isomers of linalool and its derivatives in "Hainan dayezhong" throughout its life cycle from tea tree growth and tea manufacturing to brewing. The chiral isomers of aromatic compounds present in fresh tea leaves were found to undergo substantial diurnal and seasonal changes during tea tree growth, and their proportions varied slightly across different leaf positions. The chiral isomer content of linalool and its derivatives was consistently higher in stems than in leaves.

View Article and Find Full Text PDF

Ethnopharmacological Relevance: Anxiety and depression are leading causes of disability worldwide, often exacerbated by chronic stress. Schinus terebinthifolia Raddi. has been used in traditional medicine for several purposes.

View Article and Find Full Text PDF

Cytological, Physiological, and Transcriptome Analysis of Leaf-Yellowing Mutant in .

Int J Mol Sci

December 2024

Jiangxi Provincial Key Laboratory of Oil-Tea Camellia Resource Cultivation and Utilization, Jiangxi Academy of Forestry, Nanchang 330032, China.

Color variation in plant leaves has a significant impact on their photosynthesis and plant growth. yellow-leaf mutants are ideal materials for studying the mechanisms of pigment synthesis and photosynthesis, but their mechanism of leaf variation is not clear. We systematically elucidated the intrinsic causes of leaf yellowing in the new variety 'Diecui Liuji' in terms of changes in its cell structure, pigment content, and transcript levels.

View Article and Find Full Text PDF

Mercury tolerance and bioremediation potential of mountain soil bacteria: Insights from Darjeeling, containing elevated levels of mercury.

Sci Total Environ

January 2025

Molecular Biology and Tissue Culture Laboratory, Department of Tea Science, University of North Bengal, Siliguri, West Bengal, India. Electronic address:

More and more research is now being focused on the mercury contamination of remote mountain environments. This study aimed to explore the mountain soil of Tiger Hill, Darjeeling, through the lens of its mercury tolerant bacterial microbiome to characterize regional mercury pollution and isolate strains with mercury bioremediation potential. The soil bacteria isolated from the region displayed an extreme tolerance to mercury at previously unseen levels of up to 7 mg/mL.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!