Brain stimulation is a core method in neuroscience. Numerous non-invasive brain stimulation (NIBS) techniques are currently in use in basic and clinical research, and recent advances promise the ability to non-invasively access deep brain structures. While encouraging, there is a surprising gap in our understanding of precisely how NIBS perturbs neural activity throughout an interconnected network, and how such perturbed neural activity ultimately links to behaviour. In this review, we will consider why non-human primate (NHP) models of NIBS are ideally situated to address this gap in knowledge, and why the oculomotor network that moves our line of sight offers a particularly valuable platform in which to empirically test hypothesis regarding NIBS-induced changes in brain and behaviour. NHP models of NIBS will enable investigation of the complex, dynamic effects of brain stimulation across multiple hierarchically interconnected brain areas, networks, and effectors. By establishing such links between brain and behavioural output, work in NHPs can help optimize experimental and therapeutic approaches, improve NIBS efficacy, and reduce side-effects of NIBS.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neubiorev.2021.10.040 | DOI Listing |
Sci Rep
December 2024
Research Group for Implantable Microsystems, Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Práter utca 50/a, Budapest, 1083, Hungary.
Infrared neural stimulation has consistently shown that temperature is a critical neuronal state variable. However, a comprehensive understanding of the biophysical background is essential. In this study, using high-density laminar electrode recordings, we investigated the impact of pulsed and continuous-wave infrared illumination on cortical neurons in anesthetized rats ([Formula: see text]).
View Article and Find Full Text PDFNeuro Endocrinol Lett
December 2024
1st Department of Neurology, Faculty of Medicine, Comenius University, Bratislava, Slovakia Rehabilitation Centre Harmony, Bratislava, Slovakia.
Objectives: Repetitive transcranial magnetic stimulation (rTMS) is a noninvasive neurostimulation technique that uses magnetic field to comprehensively influence events in the brain. Its use in patients after stroke focuses mainly on influencing brain neuroplasticity and therefore has the potential to improve motor functions in these patients. This study investigates the effect of rTMS on motor function recovery in patients in the acute stage of ischemic stroke.
View Article and Find Full Text PDFMol Cell Neurosci
December 2024
Izmir Biomedicine and Genome Center, Dokuz Eylul University Health Campus, Izmir, Türkiye; Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Türkiye; Department of Neuroscience, Institute of Health Sciences, Dokuz Eylul University, Izmir, Türkiye. Electronic address:
Alzheimer's disease (AD) is a neurodegenerative disorder that is characterized by the accumulation of amyloid plaques, phosphorylated tau tangles and microglia toxicity, resulting in neuronal death and cognitive decline. Since microglia are recognized as one of the key players in the disease, it is crucial to understand how microglia operate in disease conditions and incorporate them into models. The studies on human microglia functions are thought to reflect the post-symptomatic stage of the disease.
View Article and Find Full Text PDFBrain Stimul
December 2024
Department of Anesthesiology, The Affiliated Hospital of Nantong University, Nantong, 226001, China. Electronic address:
Background: Postoperative delirium (POD) is a serious complication in elderly patients after major surgery, associated with high morbidity and mortality. Treatment and prevention methods are limited. Repetitive transcranial magnetic stimulation (rTMS) shows potential in enhancing cognitive function and improving consciousness.
View Article and Find Full Text PDFInt J Sports Physiol Perform
December 2024
School of Health Sciences, Western Sydney University, Campbelltown, NSW, Australia.
Purpose: The present study investigated the effect of unpleasant salty or bitter tastes on cycling sprint performance and knee-extensor force characteristics in different fatigue states.
Methods: Following a familiarization session, 11 trained male cyclists completed 3 experimental trials (salty, bitter, and water) in a randomized crossover order. In each trial, participants cycled at 85% of the respiratory compensation point for 45 minutes and then, after a 5-minute rest, completed a 1-minute sprint.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!