Chitin and derivative chitosan-based structures - Preparation strategies aided by deep eutectic solvents: A review.

Carbohydr Polym

Department of Process Engineering and Chemical Technology, Faculty of Chemistry, Gdańsk University of Technology, Gdańsk 80-233, Poland; EcoTech Center, Gdańsk University of Technology, Gdańsk 80-233, Poland.

Published: January 2022

The high molecular weight of chitin, as a biopolymer, challenges its extraction due to its insolubility in the solvents. Also, chitosan, as the N-deacetylated form of chitin, can be employed as a primary material for different industries. The low mechanical stability and poor plasticity of chitosan films, as a result of incompatible interaction between chitosan and the used solvent, have limited its industrialization. Deep eutectic solvents (DESs), as novel solvents, can solve the extraction difficulties of chitin, and the low mechanical stability and weak plasticity of chitosan films. Also, DESs can be considered for the different chitosan and chitin productions, including chitin nanocrystal and nanofiber, N,N,N-trimethyl-chitosan, chitosan-based imprinted structures, and DES-chitosan-based beads and monoliths. This review aims to focus on the preparation and characterization (chemistry and morphology) of DES-chitin-based and DES-chitosan-based structures to understand the influence of the incorporation of DESs into the chitin and chitosan structure.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.carbpol.2021.118702DOI Listing

Publication Analysis

Top Keywords

deep eutectic
8
eutectic solvents
8
low mechanical
8
mechanical stability
8
plasticity chitosan
8
chitosan films
8
chitin
7
chitosan
6
chitin derivative
4
derivative chitosan-based
4

Similar Publications

Eutectogel-Based Drug Delivery: An Innovative Approach for Atenolol Administration.

Pharmaceutics

December 2024

Dipartimento di Farmacia, Salute e Scienze della Nutrizione, Università della Calabria, Arcavacata di Rende, 87036 Cosenza, Italy.

Hypertension affects 32% of adults worldwide, leading to a significant global consumption of cardiovascular medications. Atenolol, a β-adrenergic receptor blocker, is widely prescribed for cardiovascular diseases such as hypertension, angina pectoris, and myocardial infarction. According to the Biopharmaceutics Classification System (BCS), atenolol belongs to Class III, characterized by high solubility but low permeability.

View Article and Find Full Text PDF

Background: Curcuminoids, the bioactive compounds found in turmeric, exhibit potent antioxidant, anti-inflammatory, and neuroprotective properties. This study aims to enhance the extraction of curcuminoids from turmeric using environmentally friendly solvents supercritical CO (scCO) combined with natural deep eutectic solvents (NADESs) in one process, and to evaluate the resulting biological activity.

Methods: A Box-Behnken statistical design was applied to optimize scCO extraction conditions-pressure, CO volume, and temperature-to maximize curcuminoid yield.

View Article and Find Full Text PDF

Antimicrobial Effectiveness of L. Leaf Extracts Prepared in Natural Deep Eutectic Solvents (NaDESs).

Antibiotics (Basel)

November 2024

Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, Iuliu Hatieganu University of Medicine and Pharmacy, 8 Victor Babeș, Street, 400012 Cluj-Napoca, Romania.

Background: Blackcurrant ( L.) leaves are valuable sources of bioactive compounds, including phenolic acids, flavonoids, and tannins, which contribute to their potent antioxidant, anti-inflammatory, and antimicrobial properties.

Objectives: The overall aim of this study was to investigate the antimicrobial potential of extracts rich in bioactive compounds from blackcurrant leaves prepared in natural deep eutectic solvents (NaDESs).

View Article and Find Full Text PDF

Self-Healing Flexible Fiber Optic Sensors for Safe Underwater Monitoring.

ACS Appl Mater Interfaces

January 2025

State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510641, People's Republic of China.

The advancement of underwater monitoring technologies has been significantly hampered by the limitations of traditional electrical sensors, particularly in the presence of electromagnetic interference and safety concerns in aquatic environments. Fiber optic sensors are therefore nowadays widely applied to underwater monitoring devices. However, silicon- and polymer-based optical fibers often face challenges, such as rigidity, susceptibility to environmental stress, and limited operational flexibility.

View Article and Find Full Text PDF

Three choline chloride (ChCl)-based deep eutectic solvents (DESs) as a new type of green solvents were used for the ultrasound-assisted extraction (UAE) of bioactive compounds from Mentha spicata L. DES containing ChCl and malonic acid (MalA) was selected as the most promising, providing a more effective extraction of antioxidants from spearmint. Response surface methodology (RSM) and a Box-Behnken design (BBD) with three variables, ChCl:MalA molar ratio, water content (WC) in DES, and extraction time (t), were implemented for optimizing the extraction conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!