In recent years enzymatic treatment of maize has been utilized in the wet-milling process to increase the yield of extracted starch, proteins, and other constituents. One of the strategies to obtain this goal is to add enzymes that break down insoluble cell-wall polysaccharides which would otherwise entrap starch granules. Due to the high complexity of maize polysaccharides, this goal is not easily achieved and more knowledge about the substrate and enzyme performances is needed. To gather information of both enzyme performance and increase substrate understanding, a method was developed using mass spectrometry imaging (MSI) to analyze degradation products from polysaccharides following enzymatic treatment of the maize endosperm. Different enzymes were spotted onto cryosections of maize kernels which had been pre-treated with an amylase to remove starch. The cryosections were then incubated for 17 h. before mass spectrometry images were generated with a MALDI-MSI setup. The images showed varying degradation products for the different enzymes observed as pentose oligosaccharides differing with regards to sidechains and the number of linked pentoses. The method proved suitable for identifying the reaction products formed after reaction with different xylanases and arabinofuranosidases and for characterization of the complex arabinoxylan substrate in the maize kernel. HYPOTHESES: Mass spectrometry imaging can be a useful analytical tool for obtaining information of polysaccharide constituents and enzyme performance from maize samples.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.carbpol.2021.118693 | DOI Listing |
J Biol Inorg Chem
December 2024
Department of Chemistry and Biochemistry, University of Toledo, Toledo, OH, USA.
The outer mitochondrial membrane protein known as mitoNEET was discovered when it was labeled by a photoaffinity derivative of the anti-diabetes medication, pioglitazone. The biological role for mitoNEET and its specific mechanism for achieving this remains an active subject for research. There is accumulating evidence suggesting that mitoNEET could be a component of mitochondrial FeS cofactor biogenesis.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Endocrinology, Children's Hospital, Zhejiang University School of Medicine, National Children's Regional Medical Center, National Clinical Research Center for Child Health, 3333 Binsheng Road, Hangzhou, 310052, Zhejiang Province, China.
Williams Syndrome (WS) is a rare neurodevelopmental disorder with a prevalence of 1 in 7500 to 1 in 20,000 individuals, caused by a microdeletion in chromosome 7q11.23. Despite its distinctive clinical features, the underlying metabolic alterations remain largely unexplored.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Pathology, The Tumor Immuno-Pathology Laboratory, Erasmus University Medical Center, Wytemaweg 80, 3000 DR, Rotterdam, The Netherlands.
In previous work we discovered that T lymphocytes play a prominent role in the rise of brain metastases of ER-negative breast cancers. In the present study we explored how T lymphocytes promote breast cancer cell penetration through the blood brain barrier (BBB). An in vitro BBB model was employed to study the effects of T lymphocytes on BBB trespassing capacity of three different breast carcinoma cell lines.
View Article and Find Full Text PDFSci Rep
December 2024
Laboratory for Future Interdisciplinary Research of Science and Technology (FIRST), Institute of Integrated Research (IIR), Institute of Science Tokyo, 4259 Nagatsuta-cho, Midori, Yokohama, 226-8503, Kanagawa, Japan.
The sense of smell is fundamental for various aspects of human existence including the flavor perception, environmental awareness, and emotional impact. However, unlike other senses, it has not been digitized. Its digitalization faces challenges such as the lack of reliable odor sensing technology or the precise scent delivery through olfactory displays.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Pharmacology, University of the Basque Country, UPV/EHU, Sarriena S/N, 48940, Leioa, Bizkaia, Spain.
Cannabis use disorder affects up to 42% of individuals with schizophrenia, correlating with earlier onset, increased positive symptoms, and more frequent hospitalizations. This study employed an untargeted lipidomics approach to identify biomarkers in plasma samples from subjects with schizophrenia, cannabis use disorder, or both (dual diagnosis), aiming to elucidate the metabolic underpinnings of cannabis abuse and schizophrenia development. The use of liquid chromatography-high resolution mass spectrometry enabled the annotation of 119 metabolites, with the highest identification confidence level achieved for 16 compounds.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!