Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Recombinant proteins have a broad range of applications from basic research to pharmaceutical development. Of utmost importance in the production of recombinant proteins is the selection of the best recombinant protein production system, such that high-quality and functional recombinant proteins are produced. Plants can produce a large quantity of recombinant proteins rapidly and economically. Glycoengineering has created "humanized" plant lines that can produce glycoproteins with specific human glycans with a high level of homogeneity on demand. Here, a detailed protocol was provided to produce a large, multisubunit, and complex bispecific antibody that targets two distinct viruses. The successful production of this multiple-subunit protein demonstrated that plants are the optimal system for the production of recombinant proteins of various sizes and complexity, which can be employed for various applications including diagnostics, therapeutics, and vaccines to combat current and future pandemics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/bs.mie.2021.05.003 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!