We present a 2D-Raman-terahertz (THz) setup with multichannel (single-shot) THz detection, utilizing two crossed echelons, in order to reduce the acquisition time of typical 2D-Raman-THz experiments from days to a few hours. This speed-up is obtained in combination with a high repetition rate (100 kHz) Yb-based femtosecond laser system and a correspondingly fast array detector. The wavelength of the Yb-laser (1030 nm) is advantageous, since it assures almost perfect phase matching in GaP for THz generation and detection and since the dispersion in the transmissive echelons is minimal. 2D-Raman-THz test measurements on liquid bromoform (CHBr) are reported. An enhancement of a factor ∼5.8 in signal-to-noise ratio is obtained for single-shot detection when compared to conventional step-scanning measurements in the THz time domain, corresponding to a speed-up of acquisition time of ∼34.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/5.0065804 | DOI Listing |
Sensors (Basel)
June 2024
Center of Quantum Information Technology, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China.
There are numerous applications of terahertz (THz) imaging in many fields. However, current THz imaging is generally based on scanning technique due to the limited intensity of the THz sources. Thus, it takes a long time to obtain a frame image of the target and cannot meet the requirement of fast THz imaging.
View Article and Find Full Text PDFLight Sci Appl
May 2024
Institute for Research in Electronics and Applied Physics; Department of Physics, University of Maryland, College Park, Maryland, 20742, USA.
Terahertz (THz) waves, known as non-ionizing radiation owing to their low photon energies, can actually ionize atoms and molecules when a sufficiently large number of THz photons are concentrated in time and space. Here, we demonstrate the generation of ionizing, multicycle, 15-THz waves emitted from large-area lithium niobate crystals via phase-matched optical rectification of 150-terawatt laser pulses. A complete characterization of the generated THz waves in energy, pulse duration, and focal spot size shows that the field strength can reach up to 260 megavolts per centimeter.
View Article and Find Full Text PDFRev Sci Instrum
March 2024
Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 01239, USA.
We demonstrate optical pump-THz probe (OPTP) spectroscopy with a variable external magnetic field (0-9 T), in which the time-dependent THz signal is measured by echelon-based single-shot detection at a repetition rate of 1 kHz. The method reduces data acquisition times by more than an order of magnitude compared to conventional electro-optic sampling using a scanning delay stage. The approach illustrates the wide applicability of the single-shot measurement approach to non-equilibrium systems that are studied through OPTP spectroscopy, especially in cases where parameters such as magnetic field strength (B) or other experimental parameters are varied.
View Article and Find Full Text PDFNat Commun
February 2024
Centre Énergie Matériaux Télécommunications, Institut National de la Recherche Scientifique, Université du Québec, 1650 boulevard Lionel-Boulet, Varennes, Québec, J3X1P7, Canada.
Single-shot real-time femtophotography is indispensable for imaging ultrafast dynamics during their times of occurrence. Despite their advantages over conventional multi-shot approaches, existing techniques confront restricted imaging speed or degraded data quality by the deployed optoelectronic devices and face challenges in the application scope and acquisition accuracy. They are also hindered by the limitations in the acquirable information imposed by the sensing models.
View Article and Find Full Text PDFWe present a single-shot detection method of terahertz correlated second harmonic generation in plasma-based sources by directly mixing an optical probe into femtosecond laser-induced plasma filaments in air. The single-shot second harmonic trace is obtained by measuring a second harmonic generation on a conventional CCD with a spatiotemporally distorted probe beam. The system shows a spectrometer resolution of 22 fs/pixel on the CCD and a true resolution on the order of the probe pulse duration.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!