Metagenomic and network analysis revealed wide distribution of antibiotic resistance genes in monkey gut microbiota.

Microbiol Res

School of Grassland Science, Beijing Forestry University, Beijing, 100083, China; Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China. Electronic address:

Published: January 2022

The emergence and spread of drug-resistant microorganisms that have acquired new resistance mechanisms, leading to antibiotic resistance, continue to threaten the health of humans and animals worldwide. Non-human primates (NHPs), as close living relatives of human beings in the world, have a high degree of genetic and physiological similarity to humans. However, despite its importance, we lack a comprehensive characterization or understanding of the similarities and differences of the antibiotic resistance genes of the gut microbiome carried by non-human primates and humans. In the present study, the diversity and abundance of antibiotic resistance genes carried by the gut microbiota of cynomolgus monkeys (Macaca fascicularis) were investigated by metagenomic analysis. In total, 60 resistance types conferring resistance to 11 categories of antibiotics were identified in the gut microbiome of cynomolgus monkeys. Interestingly, the composition and abundance of ARGs carried by the gut microbiota of cynomolgus monkeys can be significantly affected by dietary changes. Moreover, we found that all ARG types carried by humans are also present in cynomolgus monkeys. The tetracycline resistance gene tet(37) is evolutionarily conserved and highly homologous. Taken together, our study provides a comprehensive overview of the diversity and richness of ARGs in the gut microbiota of cynomolgus monkeys and underlines the potentially crucial role of diet in the gut health of monkeys and humans.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.micres.2021.126895DOI Listing

Publication Analysis

Top Keywords

cynomolgus monkeys
20
antibiotic resistance
16
gut microbiota
16
resistance genes
12
microbiota cynomolgus
12
resistance
8
non-human primates
8
gut microbiome
8
carried gut
8
gut
7

Similar Publications

Background: We developed the FORCE platform to overcome limitations of oligonucleotide delivery to muscle and enable their applicability to neuromuscular disorders. The platform consists of an antigen-binding fragment, highly specific for the human transferrin receptor 1 (TfR1), conjugated to an oligonucleotide via a cleavable valine-citrulline linker. Myotonic dystrophy type 1 (DM1) is a neuromuscular disorder caused by expanded CUG triplets in the DMPK RNA, which sequester splicing proteins in the nucleus, lead to spliceopathy, and drive disease progression.

View Article and Find Full Text PDF

Background: Non-human primates (NPHs), such as rhesus macaques, cynomolgus monkeys, and Assamese macaques, play a crucial role in biomedical research. However, baseline cytokine and electrolyte data for these three species, particularly data stratified by age and sex, are limited. Therefore, the aim of this study was to establish and analyze age- and sex-specific cytokine and electrolyte profiles in these three species.

View Article and Find Full Text PDF

A humanized anti-MSLN×4-1BB bispecific antibody exhibits potent antitumour activity through 4-1BB signaling activation and fc function without systemic toxicity.

J Transl Med

January 2025

Department of Medical Oncology, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Anhui Provincial Cancer Hospital, Hefei, 230031, Anhui, China.

Background: Agonistic monoclonal antibodies targeting 4-1BB/CD137 have shown preclinical promise, but their clinical development has been limited by severe liver toxicity or limited efficacy. Therefore, a safe and efficient immunostimulatory molecule is urgently needed for cancer immunotherapy.

Methods: A novel anti-MSLN×4-1BB bispecific antibody (bsAb) was generated via antibody engineering, and its affinity and activity were detected via enzyme-linked immunosorbent assay (ELISA), flow cytometry, and T-cell activation and luciferase reporter assays.

View Article and Find Full Text PDF

A simple LC-MS/MS assay for the quantification of E6011, a novel anti-fractalkine monoclonal antibody, in cynomolgus monkey serum - comparison with ligand binding assay.

J Pharm Biomed Anal

December 2024

Global Drug Metabolism and Pharmacokinetics, Eisai Co., Ltd., Tokodai 5-1-3, Tsukuba-shi, Ibaraki 300-2635, Japan; Laboratory of Genomics-based Drug Discovery, Faculty of Medicine, Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan. Electronic address:

E6011 is a monoclonal antibody that is currently under development for the treatment of rheumatoid arthritis. While ligand binding assays (LBAs) are typically employed for the determination of therapeutic antibodies, ultra-performance liquid chromatography with tandem mass spectrometry (UPLC-MS/MS) represents an alternative platform. E6011 in monkey serum was treated with ammonium sulfate to obtain pellets for subsequent processing.

View Article and Find Full Text PDF

Suppression of Sepsis Cytokine Storm by Escherichia Coli Cell Wall-Derived Carbon Dots.

Adv Mater

January 2025

State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, 300350, China.

Article Synopsis
  • Sepsis is a severe condition caused by an uncontrolled immune reaction to infections, often involving harmful bacteria like E. coli, and currently lacks effective treatments.
  • Researchers developed E. coli wall-derived carbon dots (E-CDs) that can reduce inflammation and improve survival rates in septic mice by binding to immune receptors and preventing excessive immune responses.
  • E-CDs also show promise in other models, reducing inflammation and oxidative stress, suggesting they could be a new therapeutic approach for treating sepsis by utilizing pathogen-derived materials.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!