A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Morphological patterns and interface instability during withdrawal of liquid-particle mixtures. | LitMetric

Morphological patterns and interface instability during withdrawal of liquid-particle mixtures.

J Colloid Interface Sci

State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072, China; Key Laboratory of Rock Mechanics in Hydraulic Structural Engineering of the Ministry of Education, Wuhan University, Wuhan 430072, China.

Published: February 2022

Hypothesis: The stability of fluid-fluid interface is key to control the displacement efficiency in multiphase flow. The existence of particles can alter the interfacial dynamics and induce various morphological patterns. Moreover, the particle aggregations are expected to have a significant impact on the interface stability and patterns.

Experiments: Monodisperse polyethylene particles of different sizes are uniformly mixed in silicone oil to form the granular mixtures, which are injected into a transparent radial Hele-Shaw cell through different strategies to obtain the homogeneous and inhomogeneous (with particle aggregations) initial states. Subsequently, a systematic study of morphology and interface stability during the withdrawal of granular mixtures is performed.

Findings: For homogeneous mixtures, we observe earlier onset of fingering, more fingers and lower gas saturation at breakthrough than for pure fluid with equivalent viscosity. This effect can be attributed to the particle-induced perturbations. For inhomogeneous mixtures, particle clusters and bands significantly enhance the interface instability. Furthermore, we find that particle deposition due to liquid film entrainment occurs above a critical local flow velocity, and we elucidate the responsible mechanism through force balance analysis and the thin film theory. This work could be of practical significance in geoenergy and industrial applications.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2021.10.115DOI Listing

Publication Analysis

Top Keywords

morphological patterns
8
interface instability
8
particle aggregations
8
interface stability
8
granular mixtures
8
interface
5
mixtures
5
patterns interface
4
instability withdrawal
4
withdrawal liquid-particle
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!