Accurate and rapid detection of Aflatoxins as one of the most hazardous compounds in foodstuffs is very important. In this study, a label-free electrochemical aptasensor was developed to identify aflatoxin M1 using a reduced graphene oxide (rGO) and gold nanoparticles (AuNPs)-based pencil graphite electrode (PGE). The morphological characteristics of the electrode surface were investigated using SEM and rGO functional groups were confirmed by FTIR. Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) techniques were used to characterize various stages of electrode modification. In order to optimize the impedimetric response of the aptasensor, aptamer immobilization time, aptamer concentration, and binding aflatoxin M1 with aptamer time were optimized. Under optimal conditions, the linear concentration range of 0.5-800 ng/L and limit of detection (LOD) of 0.3 ng/L were obtained for aflatoxin M1 by measuring the resistance charge transfer data. Finally, the fabricated aptasensor was successfully used to measure AFM1 compared to HPLC method.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.foodchem.2021.131321 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!