Microfluidic device for one-step detection of breast cancer-derived exosomal mRNA in blood using signal-amplifiable 3D nanostructure.

Biosens Bioelectron

Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea; Department of Nanobiotechnology, KRIBB School of Biotechnology, University of Science and Technology, 125 Gwahak-ro, Yuseong-gu, Daejeon, 34113, Republic of Korea. Electronic address:

Published: February 2022

Metastasis attributed to approximately 90% of cancer-related deaths; hence, the detection of metastatic tumor-derived components in the blood assists in determining cancer recurrence and patient survival. Microfluidic-based sensors facilitate analysis of small fluid volumes and represent an accurate, rapid, and user-friendly method of field diagnoses. In this study, we have developed a microfluidic chip-based exosomal mRNA sensor (exoNA-sensing chip) for the one-step detection of exosomal ERBB2 in the blood by integrating a microfluidic chip and 3D-nanostructured hydrogels. The exoNA-sensing chip is a vacuum-driven power-free microfluidic chip that can accurately control the flow of trace fluids (<100 μL). The sensing part of the exoNA-sensing chip includes 3D-nanostructured hydrogels capable of detecting ERBB2 and a reference gene by amplifying a fluorescent signal via an enzyme-free catalytic hairpin assembly reaction at room temperature. This hydrogel offers a detection limit of 58.3 fM with good selectivity for target sequences. The performance of the exoNA-sensing chip was evaluated by testing in vitro and in vivo samples and was proven to be effective for cancer diagnosis and liquid biopsies.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bios.2021.113753DOI Listing

Publication Analysis

Top Keywords

one-step detection
8
exosomal mrna
8
exona-sensing chip
8
microfluidic chip
8
microfluidic
4
microfluidic device
4
device one-step
4
detection breast
4
breast cancer-derived
4
cancer-derived exosomal
4

Similar Publications

Facile preparation of a hydrophilic Eu-based ratiometric fluorescent nanosensor for Cu ion detection and imaging in living cells.

Anal Methods

January 2025

Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430072, China.

In this work, a hydrophilic Eu-based ratiometric fluorescent nanosensor (PAAC-Eu) was developed for Cu ion detection in aqueous solutions and imaging in living cells. The sensor was prepared a simple one-step reaction at room temperature, leveraging the synergistic coordination of commercially accessible polyacrylic acid (PAA) and coumarin-3-carboxylic acid (CCAH) with Eu ions. PAAC-Eu was easy to disperse in aqueous media and exhibited two characteristic emission bands at 406 nm and 618 nm, respectively, upon excitation at 350 nm.

View Article and Find Full Text PDF

Establishing an accurate prognosis for women diagnosed with breast cancer (BC) is extremely challenging. Axillary lymph node (ALN) evaluation is considered of major prognostic value. The one-step nucleic acid amplification (OSNA) assay is currently used for assessing axillary sentinel lymph node (SLN) status in BC.

View Article and Find Full Text PDF

An in situ reactive zone approach using calcium peroxide for the remediation of benzene and chlorobenzene in groundwater: A field study.

J Environ Manage

December 2024

State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 211135, China; University of Chinese Academy of Sciences, Beijing, 100049, China. Electronic address:

There is a gap in understanding the different contributions of biodegradation and free radical oxidation using calcium peroxide (CaO) for the remediation of mixed contaminants of benzene and chlorobenzene in groundwater. In this study, the remedial efficiency and mechanisms of benzene and chlorobenzene co-contaminants using CaO were explored by an integrated approach of field study and laboratory validation. It was found that in the field demonstration program, the radius of influence for each injection point using Geoprobe direct-push was larger than the designed value of 0.

View Article and Find Full Text PDF

An electrochemiluminescence biosensor based on silver-cysteine nanorod as an emitter and AgNP-decorated FeMoO as a signal amplifier for sensitive detection of heart-type fatty acid binding protein.

Mikrochim Acta

December 2024

State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China.

An electrochemiluminescence (ECL) immunosensor was developed for the highly sensitive and specific detection of heart-type fatty acid binding protein (H-FABP) and the rapid diagnosis of acute myocardial infarction (AMI). H-FABP is a biomarker that is highly specific to cardiac tissue and is associated with a range of cardiac diseases. Following myocardial injury, the rate of increase in H-FABP levels is greater than that observed for myoglobin and troponin.

View Article and Find Full Text PDF

Guidelines for plasma membrane protein detection by surface biotinylation.

Mol Cells

December 2024

Department of Pharmacology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; Woo Choo Lee Institute for Precision Drug Development, Seoul 03722, Republic of Korea. Electronic address:

Plasma membrane proteins are crucial for signal transduction, trafficking, and cell-cell interactions, all of which are vital for cell survival. These proteins, including G-protein coupled receptors (GPCRs), ion channels, transporters, and receptors, are key drug targets due to their central role in receiving and amplifying cellular signals. However, the isolation and purification of plasma membrane proteins pose significant challenges because of their integration with phospholipid bilayers and the small fraction of these proteins present in the plasma membrane.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!