Climate change is a challenge to drinking water providers worldwide and to regulatory frameworks that consider long-term investment decisions. Coping with an unstable climate warrants adjustments in regulations and new investments. The investment required to maintain a selected service level needs to balance the potential for high regret stranded assets with the political and socioeconomic consequences of not meeting water demands. In recent years, the City of Santiago in Chile has seen drought events associated with climate change, which could worsen in the future. Chile's drinking water regulatory framework does not account for uncertainty in infrastructure design to cope with the potential impacts of such events. This work presents an adaptation option design process that considers multiple plausible climate change-impacted future scenarios, accommodating both structural and nonstructural measures. In our Santiago case study adaptation measures include extensions to the existing Chilean water market and traditional structural alternatives (e.g., storage infrastructure); all are represented in a simulation model of the water utility. We evaluate and optimize packages of efficient adaptation measures for various climate scenarios. This allows comparing different portfolios of combined institutional and infrastructure interventions via a range of stakeholder measures and comparing their tradeoffs under different plausible climate-impacted hydrological scenarios. Results showed that water supply performance without climate change adaptation is worse under climate scenarios with lower water availability, which are likely to be associated with higher GHG emission scenarios such as RCP 8.5. The optimized portfolios implement various combinations of adaptation strategies to reduce the impacts of this poor performance. Considering the uncertainty on future climate scenarios, the use of nonstructural adaptation measures such as option contracts exhibits the advantage of providing water in critical periods while avoiding large investments such as building reservoirs or the purchase of permanent water rights, which could end up underused if favorable climate scenarios manifest.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jenvman.2021.114035 | DOI Listing |
Mol Plant Microbe Interact
January 2025
Max Planck Institute for Biology Tübingen, Max-Planck Ring 5, Tuebingen, Germany, 72076;
Filamentous plant pathogens pose a severe threat to food security. Current estimates suggest up to 23% yield losses to pre- and post-harvest diseases and these losses are projected to increase due to climate change (Singh et al. 2023; Chaloner et al.
View Article and Find Full Text PDFBot Stud
January 2025
Department of Oceanography, National Sun Yat-Sen University, Kaohsiung, 804, Taiwan.
Background: Large-scale coral bleaching events have become increasingly frequent in recent years. This process occurs when corals are exposed to high temperatures and intense light stress, leading to an overproduction of reactive oxygen species (ROS) by their endosymbiotic dinoflagellates. The ROS buildup prompts corals to expel these symbiotic microalgae, resulting in the corals' discoloration.
View Article and Find Full Text PDFActa Biotheor
January 2025
Department of Veterinary Parasitology and Entomology, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria.
Conflicts within the tsetse fly belt revealed a strong correlation between the dynamics of bovine trypanosomosis and the insurgency involving farmers and herders in Nigeria and parts of West Africa. This study examined the history, causes and influence of farmers-herdsmen conflicts on banditry, terrorism and food security as it relates to the epidemiology of African animal trypanosomosis (AAT). A combination of literature database searches, semi-structured questionnaires, and mathematical modeling was employed.
View Article and Find Full Text PDFMicrobiol Resour Announc
January 2025
Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, China.
is a heterotrophic bacterium commonly found in diverse marine environments. Here, we report the complete genome sequence of strain SOCE 003, which is 5,154,101 bp long, encoding 5,524 annotated protein-coding genes, 39 tRNAs, and 8 rRNAs. This genome information will help us understand the ecology of .
View Article and Find Full Text PDFEpidemiol Infect
January 2025
Department of Health Security, Infectious Diseases Control and Vaccination Unit, Finnish Institute for Health and Welfare (THL)Helsinki, Finland.
With climate change, the geographic distribution of some VBDs has expanded, highlighting the need for adaptation, and managing the risks associated with emergence in new areas. We conducted a questionnaire survey on the knowledge, attitudes, and practices (KAP) about vector-borne diseases (VBDs) among sample of Finnish residents. The questions were scored and the level of KAP was determined based on scoring as poor, fair, good, or excellent.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!