Effects of household post-consumer plastics and tyre rubber on a Baltic Sea copepod Limnocalanus macrurus were assessed. Fragments of commercial recycled low-density polyethylene vegetable bags and rubber originating from recycled car tyres were incubated in seawater, and the copepods were exposed to the filtrate of the water. L. macrurus experienced erratic swimming behaviour and increased mortality in the filtrate of unwashed vegetable bags, containing elevated concentrations of alcohols, organic acids and copper. Responses of the antioxidant defence system (ADS) were recorded in copepods exposed to rubber treatments containing high concentrations of zinc. Significant responses in the ADS enzymes indicate that reactive oxygen species (ROS) formation was exceeding the detoxification capacity of the ADS which may further lead to prolonged state of oxidative stress. Observed effects of exposure on the biochemical level coincide with impaired swimming activity of the copepods, indicating possible irreversible cellular responses leading to behavioural changes and mortality.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.marpolbul.2021.113103DOI Listing

Publication Analysis

Top Keywords

copepod limnocalanus
8
limnocalanus macrurus
8
vegetable bags
8
copepods exposed
8
exposure leachates
4
leachates post-consumer
4
post-consumer plastic
4
plastic recycled
4
rubber
4
recycled rubber
4

Similar Publications

The effects of climate-induced, long-term changes on mesozooplankton biomasses were studied based on monitoring data collected since 1966 in the northern Baltic Sea. We found that the biomasses of marine and brackish mesozooplankton had decreased significantly from 1966 to 2019, and a remarkable biomass and functional biodiversity loss took place in the mesozooplankton community. Our results put emphasis on the impact of two climate-driven regime shifts for the region's mesozooplankton community.

View Article and Find Full Text PDF

We analyzed the taxonomic and fatty-acid (FA) compositions of phytoplankton and zooplankton, and the environmental conditions at three coastal and offshore stations of the northern Baltic Sea. Plankton samples for FA analyses were collected under the framework of sampling campaigns of the Swedish National Marine Monitoring program in September 2017. Monitoring data of phytoplankton and zooplankton biomass, and environmental variables at each station were extracted from the Swedish Meteorological and Hydrological Institute database (https://sharkweb.

View Article and Find Full Text PDF

Effects of household post-consumer plastics and tyre rubber on a Baltic Sea copepod Limnocalanus macrurus were assessed. Fragments of commercial recycled low-density polyethylene vegetable bags and rubber originating from recycled car tyres were incubated in seawater, and the copepods were exposed to the filtrate of the water. L.

View Article and Find Full Text PDF

Methylmercury (MeHg) is a potent neurotoxin that biomagnifies in marine food webs. Inorganic mercury (Hg) methylation is conducted by heterotrophic bacteria inhabiting sediment or settling detritus, but endogenous methylation by the gut microbiome of animals in the lower food webs is another possible source. We examined the occurrence of the bacterial gene (hgcA), required for Hg methylation, in the guts of dominant zooplankters in the Northern Baltic Sea.

View Article and Find Full Text PDF

We studied the copepod Limnocalanus macrurus for seasonal variation in the composition of fatty acids, wax esters and sterols in large boreal lakes, where it occurs as a glacial-relict. Vast wax ester reserves of Limnocalanus were accumulated in a period of only two months, and comprised mono- and polyunsaturated fatty acids (PUFA) and saturated fatty alcohols. In winter, the mobilization of wax esters was selective, and the proportion of long-chain polyunsaturated wax esters declined first.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!