Novel manganese cycling at very low ionic strengths in the Columbia River Estuary.

Water Res

Division of Environmental and Biomolecular Systems, Oregon Health & Science University, Portland, OR 97239, USA.

Published: December 2021

Mixing of waters of different ionic strengths induces the geochemical cycling of reactive elements. The most reactive zone is where the gradient in ionic strength is steepest. In oxygenated systems, the redox-active metal manganese cycles between soluble and particulate fractions through three oxidation states, manganese(II), manganese(III) and manganese(IV). This cycling strongly affects the mobility of inorganic and organic chemicals. The most accessible environmental system where waters with different ionic strengths mix are estuaries. During six Eulerian studies in the Columbia River Estuary, each up to 26 h, we measured manganese speciation and concentration across a salinity (S) gradient centred around S = 0.06-6, equivalent to a seawater ionic strength (I) of 1.2-120 mM. This zone, representing the region between freshwater and the more intensively studied estuarine turbidity maximum, presents a highly dynamic geochemical environment in which the manganese cycle propagates through four steps as I increases due to mixing: 1. Before a measurable change in I, manganese, as particulate manganese(III/IV) oxides (MnO), undergoes reduction, independent of photochemical processes, to soluble manganese(III) stabilized in organic complexes (Mn(III)-L) and manganese(II); 2. As I increases between 5 and 80 mM, Mn(III)-L reduction continues and manganese(II) adsorbs onto particle surfaces; 3. As I increases further, though remaining below 80 mM (S ≈ 4), adsorbed manganese(II) desorbs and/or is oxidized and is released as Mn(III)-L or oxidises further to MnO; 4. The breakdown of Mn(III)-L complexes leads to higher manganese(II) and MnO, which at Mid-Estuary-Salinities (I = 320-480 mM) precipitates. This manganese cycling in low I waters directly affects a system's redox chemistry and provides a window into understanding the extensive, yet hidden, freshwater/saline water interface in aquifers, soils, sediments and estuaries.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.watres.2021.117801DOI Listing

Publication Analysis

Top Keywords

ionic strengths
12
manganese cycling
8
cycling low
8
columbia river
8
river estuary
8
waters ionic
8
ionic strength
8
ionic
5
manganese
5
manganeseii
5

Similar Publications

SnRK2 kinases sense molecular crowding and form condensates to disrupt ABI1 inhibition.

Sci Adv

January 2025

Key Laboratory of Plant Carbon Capture, Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China.

Plants sense and respond to hyperosmotic stress via quick activation of sucrose nonfermenting 1-related protein kinase 2 (SnRK2). Under unstressed conditions, the protein phosphatase type 2C (PP2C) in clade A interact with and inhibit SnRK2s in subgroup III, which are released from the PP2C inhibition via pyrabactin resistance 1-like (PYL) abscisic acid receptors. However, how SnRK2s are released under osmotic stress is unclear.

View Article and Find Full Text PDF

<b>Background and Objective:</b> The biodiversity of rice cultivars, including local rice from North Sulawesi, represents a potential source of germplasm for fulfilling national food needs. A few publications related to the characteristics of salinity stress resistance in rice cultivars, including local rice from North Sulawesi. This study aimed to examine the morphological response to salinity stress at the germination phase in eight rice cultivars cultivated in North Sulawesi, Indonesia.

View Article and Find Full Text PDF

Hydrogeochemical characterization of shallow and deep groundwater for drinking and irrigation water quality index of Kathmandu Valley, Nepal.

Environ Geochem Health

January 2025

Environment Research Laboratory, Faculty of Science, Nepal Academy of Science and Technology, Khumaltar, Lalitpur, Nepal.

A comprehensive hydrogeochemical analysis of 156 groundwater samples (106 shallow and 50 deep) was conducted in the Kathmandu Valley, Nepal. This study addresses a significant research gap by focusing on the hydro-geochemical composition and contamination of groundwater in the Kathmandu Valley, an area with limited detailed assessments. The novelty of this work lies in its comprehensive analysis of both shallow and deep groundwater, particularly concerning the high concentration of contaminants like arsenic, microbial pathogens, and ammonium, which are critical for public health.

View Article and Find Full Text PDF

Microbial fuel cell (MFC) technology has received increased interest as a suitable approach for treating wastewater while producing electricity. However, there remains a lack of studies investigating the impact of inoculum type and hydraulic retention time (HRT) on the efficiency of MFCs in treating industrial saline wastewater. The effect of three different inocula (activated sludge from a fish-canning industry and two domestic wastewater treatment plants, WWTPs) on electrochemical and physicochemical parameters and the anodic microbiome of a two-chambered continuous-flow MFC was studied.

View Article and Find Full Text PDF

The mechanisms that regulate minor and trace element biomineralization in the echinoid skeleton can be primarily controlled biologically (, by the organism and its vital effects) or by extrinsic environmental factors. Assessing the relative role of those controls is essential for understanding echinoid biomineralization, taphonomy, diagenesis, and their potential as geochemical archives. In this study, we (1) contrast geochemical signatures of specimens collected across multiple taxa and environmental settings to assess the effects of environmental and physiological factors on skeletal biomineralogy; and (2) analyze the nanomechanical properties of the echinoid skeleton to assess potential linkages between magnesium/calcium (Mg/Ca) ratios and skeletal nanohardness.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!