Agriculture is facing major constraints with the increase of global warming, being drought a major factor affecting productivity. Soybean (Glycine max) is among the most important food crops due to the high protein and lipid content of its seeds despite being considerably sensitive to drought. Previous knowledge has shown that drought induces a severe modulation in lipid and fatty acid content of leaves, related to alteration of membrane structure by lipolytic enzymes and activation of signalling pathways. In that sense, little is known on lipid modulation and lipolytic enzymes' role in soybean drought stress tolerance. In this work, we present for the first time, soybean leaves lipid content modulation in several drought stress levels, highlighting the involvement of phospholipases A. Moreover, a comprehensive analysis of the phospholipase A superfamily was performed, where 53 coding genes were identified and 7 were selected to gene expression analysis in order to elucidate their role in soybean lipid modulation under water deficit. Proportionally to the drought severity, our results revealed that galactolipids relative abundance and their content in linolenic acid decrease. At the same time an accumulation of neutral lipids, mainly due to triacylglycerol content increase, as well as their content in linolenic acid, is observed. Overall, PLA gene expression regulation and lipid modulation corroborate the hypothesis that phospholipases A may be channelling the plastidial fatty acids into extraplastidial lipids leading to a drought-induced accumulation of triacylglycerol in soybean leaves, a key feature to cope with water stress.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.plaphy.2021.10.033 | DOI Listing |
J Agric Food Chem
December 2024
College of Horticulture, Henan Agricultural University, Zhengzhou 450046, PR China.
Drought limits crop growth and yield. Inoculation with plant growth-promoting rhizobacteria (PGPR) emerges as a promising strategy to protect crops against drought. However, the number of drought-tolerant PGPR is limited, and the regulation mechanisms remain elusive.
View Article and Find Full Text PDFPlant Signal Behav
December 2025
State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, Gansu, China.
Abscisic acid (ABA) mediated stomatal closure is a highly effective mode of active stomatal regulation under drought stress. Previous studies on stomatal regulation have primarily focused on the leaves of vascular plants, while research on the stomatal behavior of bulbous plants remains unknown. In addition, ABA-induced stomatal regulation in bulbs has yet to be explored.
View Article and Find Full Text PDFSci Rep
December 2024
Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, Australia.
The cultivation of common beans (Phaseolus vulgaris L.) in semi-arid regions is affected by drought. To explore potential alleviation strategies, we investigated the impact of inoculation with Bacillus velezensis, and the application of acetylsalicylic acid (ASA) via foliage application (FA), which promote plant growth and enhance stress tolerance.
View Article and Find Full Text PDFPlant Physiol Biochem
December 2024
Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education)/College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400715, China; State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University/Academy of Agricultural Sciences of Southwest University, Chongqing, 400715, China. Electronic address:
Rab GTPases are a class of small GTP-binding proteins, play crucial roles in the membrane transport machinery with in eukaryotic cells. They dynamically regulate the precise targeting and tethering of transport vesicles to specific compartments by transitioning between active and inactive states. In plants, Rab GTPases are classified into eight distinct subfamilies: Rab1/D, Rab2/B, Rab5/F, Rab6/H, Rab7/G, Rab8/E, Rab11/A, and Rab18/C.
View Article and Find Full Text PDFPlant Physiol Biochem
December 2024
State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling, 712100, China; Key Laboratory of Wheat Biology and Genetic Improvement on Northwestern China, Ministry of Agriculture and Rural Affairs, Xianyang, 712100, China. Electronic address:
Photosynthesis drives crop growth and production, and strongly affects grain yields; therefore, it is an ideal trait for wheat drought resistance breeding. However, studies of the negative effects of drought stress on wheat photosynthesis rates have lacked accurate evaluation methods, as well as high-throughput techniques. We investigated photosynthetic capacity under drought stress in wheat varieties with varying degrees of drought stress resistance using hyperspectral and chlorophyll fluorescence (ChlF) imaging data.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!