The endocannabinoid system (ECS) is composed of endogenous cannabinoids; components involved in their synthesis, transport, and degradation; and an expansive variety of cannabinoid receptors. Hypofunction or deregulation of the ECS is related to pathological conditions. Consequently, endogenous enhancement of endocannabinoid levels and/or regulation of their metabolism represent promising therapeutic approaches. Several major strategies have been suggested for the modulation of the ECS: (1) blocking endocannabinoids degradation, (2) inhibition of endocannabinoid cellular uptake, and (3) pharmacological modulation of cannabinoid receptors as potential therapeutic targets. Here, we focused in this review on degradation/reuptake inhibitors over cannabinoid receptor modulators in order to provide an updated synopsis of contemporary evidence advancing mechanisms of endocannabinoids as pharmacological tools with therapeutic properties for the treatment of several disorders. For this purpose, we revisited the available literature and reported the latest advances regarding the biomedical properties of fatty acid amide hydrolase and monoacylglycerol lipase inhibitors in pre-clinical and clinical studies. We also highlighted anandamide and 2-arachidonoylglycerol reuptake inhibitors with promising results in pre-clinical studies using in vitro and animal models as an outlook for future research in clinical trials.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s12640-021-00424-z | DOI Listing |
J Biol Inorg Chem
December 2024
Department of Chemistry and Biochemistry, University of Toledo, Toledo, OH, USA.
The outer mitochondrial membrane protein known as mitoNEET was discovered when it was labeled by a photoaffinity derivative of the anti-diabetes medication, pioglitazone. The biological role for mitoNEET and its specific mechanism for achieving this remains an active subject for research. There is accumulating evidence suggesting that mitoNEET could be a component of mitochondrial FeS cofactor biogenesis.
View Article and Find Full Text PDFJ Neurol
December 2024
Department of Neurosciences Rita Levi Montalcini, University of Turin, Turin, Italy.
Introduction: Non-motor symptoms (NMS) in Parkinson's disease (PD) can fluctuate daily, impacting patient quality of life. The Non-Motor Fluctuation Assessment (NoMoFA) Questionnaire, a recently validated tool, quantifies NMS fluctuations during ON- and OFF-medication states. Our study aimed to validate the Italian version of NoMoFA, comparing its results to the original validation and further exploring its clinimetric properties.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Urology, Urological Science Institute, Yonsei University College of Medicine, 50-1 Yonsei-Ro, Seodaemun-gu, Seoul, 03722, South Korea.
Carbon dots (CDs) are versatile nanomaterials that are considered ideal for application in bioimaging, drug delivery, sensing, and optoelectronics owing to their excellent photoluminescence, biocompatibility, and chemical stability features. Nitrogen doping enhances the fluorescence of CDs, alters their electronic properties, and improves their functional versatility. N-doped CDs can be synthesized via solvothermal treatment of carbon sources with nitrogen-rich precursors; however, systematic investigations of their synthesis mechanisms have been rarely reported.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, P.O. Box 7, Nablus, Palestine.
Carthamus tinctorius L. (Safflower) is widely used in traditional Japanese, Korean, Chinese, Arabian, and Persian herbal medicine to treat metabolic diseases. This study aimed to characterize C.
View Article and Find Full Text PDFSci Rep
December 2024
Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Postbus 513, Eindhoven, 5600 MB, The Netherlands.
Articular cartilage is distinguished by the unique alignment of type II collagen, a feature crucial for its mechanical properties and function. This characteristic organization is established during postnatal development of the tissue, yet the underlying mechanisms remain poorly understood. In this study, a potential mechanism for type II collagen alignment by cartilage-specific growth from within the tissue was investigated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!