Arsenic (As) represents an environmental risk and phytoremediation has been identified as a good technique to recover contaminated soils. Plants defense mechanisms needed to be enhanced against As stress-promoting action by biostimulants such as humic materials. This work sought to determine the effectiveness of an alkaline vermicompost extract (AEV) and in mitigating stresses promoted by As in maize plants, increasing their potential use for phytoextraction. The AEV were extracted from vermicompost and two preliminary assays in Leonard pots were carried out: the first one to define the best AEV concentration-response dose and the second to point out the toxic As concentration. The second step was to set up a 28-day long experiment with the following four treatments: control, AEV, As, As + AEV. AEV attenuated As-induced stress in maize plants. Maize dry biomass was reduced in the As treatment and rebalanced to values similar to the control in the As + HS treatment while the plants treated only with HS showed the highest biomass among the treatments. The concentrations of P, Fe, Cu, Mn and Ni, and catalase (CAT), ascorbate peroxidase (APX) and superoxide dismutase (SOD) antioxidant activity increased in the As treatment and decreased in the As + AEV treatment. The rate of photosynthesis decreased, and the internal CO concentration increased with stress induced by As, where both effects were attenuated by AEV. Our results show the positive effect of the AEV in alleviating As abiotic stress on maize growth, offering new options of employment of humic substances in phytoremediation process.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-021-17255-2DOI Listing

Publication Analysis

Top Keywords

maize plants
12
promoted maize
8
stress maize
8
aev
7
maize
5
plants
5
alkaline extract
4
extract vermicompost
4
vermicompost reduced
4
stress
4

Similar Publications

Zein, a plant-based protein obtained from the endosperm of corn ( L.) received colossal attention in recent years due to its promising features like being economical, mucoadhesive, gastro-resistant, biocompatible and aids to load hydrophilic and hydrophobic therapeutic agents. It can be employed for the fabrication of various drug delivery systems such as nanoparticles, micelles, hydrogels, nanofibers and films.

View Article and Find Full Text PDF

Field pennycress () is a new biofuel winter annual crop with extreme cold hardiness and a short life cycle, enabling off-season integration into corn and soybean rotations across the U.S. Midwest.

View Article and Find Full Text PDF

Following the identification of the self-compatibility gene () in diploid potatoes two decades ago, the breeding of inbred based diploid hybrid potatoes made its way. Tetraploid potatoes have a long history of cultivation through domestication and selection. Tetrasomic inheritance, heterozygosity and clonal propagation complicate genetic studies, resulting in a low genetic gain in potato breeding.

View Article and Find Full Text PDF

Phosphorus (P) plays an essential role for plant growth, but conventional P sources used in agriculture are finite and non-renewable. As a result, there is a growing need to explore alternative P sources such as sewage sludge (SS) - a P-rich solid waste and valuable renewable resource that is often mismanaged globally. Pyrolysis is a promising technique for managing SS.

View Article and Find Full Text PDF

Reuse of reclaimed wastewater (RWW) in agriculture represents one of the key strategies to promote for reducing the pressures on water sources, as also fostered by the EU governance. Indeed, the European Regulation 741/2020 on water reuse, entered into force in 2023, was issued with the aim to extend the reuse of treated water in agriculture under safe conditions. It establishes the minimum quality requirements; it also foresees the possibility to add additional requirements, especially for contaminants of emerging concern (CECs), based on "scientific evidence" and the risk assessment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!