A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Hyperaccumulation of fucoxanthin by enhancing methylerythritol phosphate pathway in Phaeodactylum tricornutum. | LitMetric

Hyperaccumulation of fucoxanthin by enhancing methylerythritol phosphate pathway in Phaeodactylum tricornutum.

Appl Microbiol Biotechnol

Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science, Jinan University, Guangzhou, 510632, China.

Published: December 2021

The established human health benefits of carotenoids along with the contemporary consumption of natural carotenoids bring the necessity to sustainable production of carotenoids. Among, marine diatoms have emerged as the potential biological resources for carotenoid production; however, their relatively lower yield in native strains provides the impetus to genetically improve the diatoms to cope with the burgeoning demand. In this study, we genetically improved the diatom Phaeodactylum tricornutum by overexpressing key carotenogenic genes involved in methylerythritol phosphate (MEP) pathway. The genes with lower relative transcript level under optimum conditions such as CMK and CMS were selected and overexpressed in P. tricornutum individually. Both CMK and CMS overexpressing lines exhibited elevated growth and photosynthesis. The expression of key carotenogenic genes such as PSY, PDS, ZDS, CRT, and LCYB was significantly upregulated. Furthermore, total carotenoid content was significantly increased; particularly, fucoxanthin content was increased by 1.83- and 1.82-fold in engineered lines CMK and CMS, respectively. Together, the results identify the potential metabolic targets and also uncover the crucial role of MEP pathway in redirecting metabolic precursors towards carotenogenesis. KEY POINTS: • Low abundant genes CMS and CMK of MEP pathway were overexpressed in the diatom • Total carotenoid content was increased, particularly fucoxanthin • Critical metabolic nodes were uncovered to accelerate fucoxanthin biosynthesis.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00253-021-11660-wDOI Listing

Publication Analysis

Top Keywords

mep pathway
12
cmk cms
12
content increased
12
methylerythritol phosphate
8
phaeodactylum tricornutum
8
key carotenogenic
8
carotenogenic genes
8
total carotenoid
8
carotenoid content
8
increased fucoxanthin
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!