The Multiweek Thermal Stability of Medical-Grade Poly(ε-caprolactone) During Melt Electrowriting.

Small

Department of Functional Materials in Medicine and Dentistry and Bavarian Polymer Institute, University Hospital of Würzburg, Pleicherwall 2, 97070, Würzburg, Germany.

Published: January 2022

Melt electrowriting (MEW) is a high-resolution additive manufacturing technology that places unique constraints on the processing of thermally degradable polymers. With a single nozzle, MEW operates at low throughput and in this study, medical-grade poly(ε-caprolactone) (PCL) is heated for 25 d at three different temperatures (75, 85, and 95 °C), collecting daily samples. There is an initial increase in the fiber diameter and decrease in the jet speed over the first 5 d, then the MEW process remains stable for the 75 and 85 °C groups. When the collector speed is fixed to a value at least 10% above the jet speed, the diameter remains constant for 25 d at 75 °C and only increases with time for 85 and 95 °C. Fiber fusion at increased layer height is observed for 85 and 95 °C, while the surface morphology of single fibers remain similar for all temperatures. The properties of the prints are assessed with no observable changes in the degree of crystallinity or the Young's modulus, while the yield strength decreases in later phases only for 95 °C. After the initial 5-d period, the MEW processing of PCL at 75 °C is extraordinarily stable with overall fiber diameters averaging 13.5 ± 1.0 µm over the entire 25-d period.

Download full-text PDF

Source
http://dx.doi.org/10.1002/smll.202104193DOI Listing

Publication Analysis

Top Keywords

medical-grade polyε-caprolactone
8
melt electrowriting
8
jet speed
8
multiweek thermal
4
thermal stability
4
stability medical-grade
4
polyε-caprolactone melt
4
electrowriting melt
4
mew
4
electrowriting mew
4

Similar Publications

Vaginal Orthosis After Native Tissue Reconstructive Surgery: Design and Phase 0.

Urogynecology (Phila)

December 2024

From the Division of Urogynecology and Reconstructive Pelvic Surgery, University of Alabama at Birmingham, Birmingham, AL.

Importance: Pelvic organ prolapse recurrence following native tissue repair occurs with composite failure rates of 9-19% within 12 months, predominantly involving apical/anterior compartments. Objective The objective of this study was to develop a novel vaginal orthosis (NVO) device prototype through an iterative design process based on investigator and user feedback.

Study Design: The NVO was designed based on pelvic floor biomechanical principles to mitigate unopposed intra-abdominal pressure of the anterior vagina by absorbing and redirecting intra-abdominal forces to the levator ani and tailored to accommodate postoperative vaginal caliber and axis.

View Article and Find Full Text PDF

Context: In the context of biomaterials, triethylene glycol dimethacrylate (TEGDMA) is a widely used monomer in dental resins due to its favorable mechanical properties and ease of polymerization. However, improving its structural stability and enhancing its performance in biological applications remain crucial goals. This study examines the impact of incorporating gold (Au) nanoparticles into the TEGDMA matrix, focusing on their potential to improve mechanical, thermal, and optical properties for biomedical applications.

View Article and Find Full Text PDF

Continuous monitoring of nocturnal blood pressure is crucial for hypertension management and cardiovascular risk assessment. However, current clinical methods are invasive and discomforting, posing challenges. These traditional techniques often disrupt sleep, impacting patient compliance and measurement accuracy.

View Article and Find Full Text PDF

LOTUS Software to Process Wearable EmbracePlus Data.

Sensors (Basel)

November 2024

Science of Learning in Education Centre, National Institute of Education, Nanyang Technological University, Singapore 637616, Singapore.

The Empatica EmbracePlus is a recent innovation in medical-grade wristband wearable sensors that enable unobtrusive continuous measurement of pulse rate, electrodermal activity, skin temperature, and various accelerometry-based actigraphy measures using a minimalistic smartwatch design. The advantage of this lightweight wearable is the potential for holistic longitudinal recording and monitoring of physiological processes that index a suite of autonomic functions, as well as to provide ecologically valid insights into human behaviour, health, physical activity, and psychophysiological processes. Given the longitudinal nature of wearable recordings, EmbracePlus data collection is managed by storing raw timeseries in short 'chunks' in avro file format organised by universal standard time.

View Article and Find Full Text PDF

Copper oxide nanoparticles (CuONPs) offer promising antimicrobial properties against a range of pathogens, addressing the urgent issue of antibiotic resistance. This study details the synthesis of glutamic acid-coated CuONPs (GA-CuONPs) and their functionalisation on medical-grade silicone tubing, using an oxysilane bonding agent. The resulting coating shows significant antimicrobial activity against both Gram-positive and Gram-negative bacteria, including multidrug-resistant strains, while remaining non-toxic to human cells and exhibiting stable adherence, without leaching.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!