Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Oral squamous cell carcinoma (OSCC) is one of the most common carcinomas of the oral cavity. However, the regulatory mechanisms on miR-32-5p remain poorly understood in OSCC. The expression of miR-32-5p, Krüppel-like factor 2 (KLF2), C-X-C motif chemokine receptor 4 (CXCR4), and epithelial-to-mesenchymal transition (EMT)-related proteins (E-cadherin, Vimentin, N-cadherin, and Snail) were evaluated were assessed using RT-qPCR and Western blot. 3-(4, 5-Dimethylthiazolyl2)-2, 5-diphenyltetrazolium bromide assay, wound healing assay, and transwell assay were employed to detect cell proliferation, migration, and invasion of OSCC cells. Finally, dual-luciferase reporter assay was performed to verify the binding relationship between KLF2 and miR-32-5p. MiR-32-5p was highly expressed while KLF2 was lowly expressed in OSCC cells, and miR-32-5p knockdown or KLF2 overexpression could markedly reduce cell proliferation, migration, invasion, and EMT of OSCC cells. What is more, KLF2 was the target of miR-32-5p, and knockdown of KLF2 abolished the inhibitory effect of miR-32-5p inhibitor on progression of OSCC. Finally, CXCR4 expression was negatively regulated by KLF2, and inhibition of CXCR4 obviously alleviated the biological effects of si-KLF2 on the progression of OSCC. MiR-32-5p could enhance cell proliferation, migration, invasion, and EMT of OSCC cells, and the discovery of miR-32-5p/KLF2/CXCR4 axis might provide potential therapeutic targets for OSCC.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/kjm2.12450 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!