Replication stress causes replication fork stalling, resulting in an accumulation of single-stranded DNA (ssDNA). Replication protein A (RPA) and CTC1-STN1-TEN1 (CST) complex bind ssDNA and are found at stalled forks, where they regulate RAD51 recruitment and foci formation in vivo. Here, we investigate crosstalk between RPA, CST, and RAD51. We show that CST and RPA localize in close proximity in cells. Although CST stably binds to ssDNA with a high affinity at low ionic strength, the interaction becomes more dynamic and enables facilitated dissociation at high ionic strength. CST can coexist with RPA on the same ssDNA and target RAD51 to RPA-coated ssDNA. Notably, whereas RPA-coated ssDNA inhibits RAD51 activity, RAD51 can assemble a functional filament and exhibit strand-exchange activity on CST-coated ssDNA at high ionic strength. Our findings provide mechanistic insights into how CST targets and tethers RAD51 to RPA-coated ssDNA in response to replication stress.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8571288PMC
http://dx.doi.org/10.1038/s41467-021-26624-xDOI Listing

Publication Analysis

Top Keywords

replication stress
12
ionic strength
12
rpa-coated ssdna
12
cst rpa
8
rad51 activity
8
stress replication
8
ssdna
8
ssdna high
8
high ionic
8
rad51 rpa-coated
8

Similar Publications

Prostate cancer (PCa) remains a critical global health challenge, with high mortality rates and significant heterogeneity, particularly in advanced stages. While early-stage PCa is often manageable with conventional treatments, metastatic PCa is notoriously resistant, highlighting an urgent need for precise biomarkers and innovative therapeutic strategies. This review focuses on the dualistic roles of sirtuins, a family of NAD+-dependent histone deacetylases, dissecting their unique contributions to tumor suppression or progression in PCa depending on the cellular context.

View Article and Find Full Text PDF

Pseudoachondroplasia (PSACH), a severe dwarfing condition characterized by impaired skeletal growth and early joint degeneration, results from mutations in cartilage oligomeric matrix protein (COMP). These mutations disrupt normal protein folding, leading to the accumulation of misfolded COMP in chondrocytes. The MT-COMP mouse is a murine model of PSACH that expresses D469del human COMP in response to doxycycline and replicates the PSACH chondrocyte and clinical pathology.

View Article and Find Full Text PDF

High stocking density (HSD) and heat stress (HS) challenge broiler production. While antibiotics can mitigate the adverse effects of HS and HSD, their restricted use underscores the need to explore phytochemicals, particularly their combined effects under such conditions. This study investigated the influence of flavonoids, isoquinoline alkaloids, and their combinations as alternatives to bacitracin on growth performance, inflammatory status, gut morphology, and ceca microbiome in broilers raised under HSD and HS.

View Article and Find Full Text PDF
Article Synopsis
  • Scoliosis is identified through Cobb's angle, and this study aims to create a digital twin of the spine to analyze biomechanical stresses and disc degeneration related to idiopathic scoliosis using patient-specific data.
  • A 3D computational model was developed that modifies intervertebral disc properties based on radiological measurements, validated by comparing with patient images; finite element analysis clarified the impact of deformity on spinal biomechanics.
  • The results showed that the model accurately represented thoracic scoliosis and revealed that disc strain increases near the apex, with "type-C" curves at higher risk for herniation compared to "type-S," thereby enhancing understanding of scoliosis and aiding in treatment planning.
View Article and Find Full Text PDF

Minichromosome Maintenance Proteins: From DNA Replication to the DNA Damage Response.

Cells

December 2024

Karmanos Cancer Institute, Department of Oncology, School of Medicine, Wayne State University, 4100 John R Street, Detroit, MI 48201, USA.

The DNA replication machinery is highly conserved from bacteria to eukaryotic cells. Faithful DNA replication is vital for cells to transmit accurate genetic information to the next generation. However, both internal and external DNA damages threaten the intricate DNA replication process, leading to the activation of the DNA damage response (DDR) system.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!