The thorax is a specialized structure central to insect flight. In the thorax, flight muscles are surrounded by a thin layer of cuticle. The structure, composition, and material properties of this chitinous structure may influence the efficiency of the thorax in flight. However, these properties, as well as their variation throughout the thorax and between insect taxa, are not known. We provide a multi-faceted assessment of thorax cuticle for fliers with asynchronous (honey bee; Apis mellifera) and synchronous (hawkmoth; Manduca sexta) muscles. These muscle types are defined by the relationship between their activation frequency and the insect's wingbeat frequency. We investigated cuticle structure using histology, resilin distribution through confocal laser scanning microscopy, and modulus gradation with nanoindentation. Our results suggest that thorax cuticle properties are highly dependent on anatomical region and species. Modulus gradation, but not mean modulus, differed between the two types of fliers. In some regions, A. mellifera had a positive linear modulus gradient from cuticle interior to exterior of about 2 GPa. In M. sexta, modulus values through cuticle thickness were not well represented by linear fits. We utilized finite element modeling to assess how measured modulus gradients influenced maximum stress in cuticle. Stress was reduced when cuticle with a linear gradient was compressed from the high modulus side. These results support the protective role of the A. mellifera thorax cuticle. Our multi-faceted assessment advances our understanding of thorax cuticle structural and material heterogeneity and the potential benefits of material gradation to flying insects. STATEMENT OF SIGNIFICANCE: The insect thorax is essential for efficient flight but questions remain about the contribution of the exoskeletal cuticle. We investigated the microscale properties of the thorax cuticle, a crucial step to determine its role in flight. Techniques including histology, nanoindentation, and confocal laser scanning microscopy revealed that cuticle properties vary through cuticle thickness, by thorax region, and between species with asynchronous (honey bee; Apis mellifera) and synchronous (hawkmoth; Manduca sexta) muscles. This variation highlights the importance of high resolution cuticle assessment for flying insect lineages and points to factors that may (modulus gradation) and may not (mean modulus) contribute to different flight forms. Understanding material variation in the thorax may inform design of technologies inspired by insects, such as mobile micro robots.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.actbio.2021.10.035 | DOI Listing |
PLoS Pathog
November 2024
Department of Entomology, University of Maryland, College Park, Maryland, United States of America.
Both Metarhizium robertsii ARSEF 2575 (Mr2575) and Metarhizium anisopliae ARSEF 549 (Ma549) infect a range of insects whilst also interacting with plants; however, little is known about the traits that affect the competitive ability of different strains. We examined the interactions between Mr2575 and Ma549 in culture and during co-infection of plants (Arabidopsis thaliana) and insects. Mr2575 outcompetes Ma549 under nutrient-limiting conditions, including root exudates, giving it a priority advantage on Arabidopsis roots.
View Article and Find Full Text PDFBiol Methods Protoc
August 2024
Department of Vector Biology, Liverpool School of Tropical Medicine, L3 5QA, Liverpool, United Kingdom.
Tsetse are the insects responsible for transmitting African trypanosomes, which cause sleeping sickness in humans and animal trypanosomiasis in wildlife and livestock. Knowing the age of these flies is important when assessing the effectiveness of vector control programs and modelling disease risk. Current methods to assess fly age are, however, labour-intensive, slow, and often inaccurate as skilled personnel are in short supply.
View Article and Find Full Text PDFInsect Biochem Mol Biol
June 2024
College of Plant Protection, China Agricultural University, Beijing, 100193, China. Electronic address:
Insect wax accumulates on the surface of insect cuticle, which acts as an important protective barrier against rain, ultraviolet light radiation, pathogens, etc. The waxing behavior, wax composition and molecular mechanism underling wax biosynthesis are unclear in dustywings. Herein, the current study determined the vital developmental stage for waxing behavior in dustywings, examined the components of waxy secretions, and identified key regulatory genes for wax biosynthesis.
View Article and Find Full Text PDFBull Entomol Res
April 2024
National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, PR China.
Genes involved in melanin production directly impact insect pigmentation and can affect diverse physiology and behaviours. The role these genes have on sex behaviour, however, is unclear. In the present study, the crucial melanin pigment gene was functionally characterised in an urban pest, the German cockroach, .
View Article and Find Full Text PDFMicrosc Res Tech
August 2024
PHIM Plant Health Institute, Univ Montpellier, INRAE, CIRAD, Institut Agro, IRD, Montpellier, France.
Detecting RNA molecules within their natural environment inside intact arthropods has long been challenging, particularly in small organisms covered by a tanned and pigmented cuticle. Here, we have developed a methodology that enables high-resolution analysis of the spatial distribution of transcripts of interest without having to dissect tiny organs or tissues, thereby preserving their integrity. We have combined an in situ amplification approach based on hybridization chain reaction, which enhances the signal-to-noise ratio, and a clearing approach that allows the visualization of inner organs beneath the cuticle.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!