Macrophages in tumor: An inflammatory perspective.

Clin Immunol

Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata 700026, India.

Published: November 2021

Inflammation is a part of carefully co-ordinated healing immune exercise to eliminate injurious stimuli. However, in substantial number of cancer types, it contributes in shaping up of robust tumor microenvironment (TME). Solid TME promotes infiltration of tumor associated macrophages (TAMs) that contributes to cancer promotion. TAMs are functionally heterogeneous and display an extraordinary degree of plasticity, which allow 'Switching' of macrophages into an 'M2', phenotype, linked with immunosuppression, advancement of tumor angiogenesis with metastatic consequences. In contrary to the classical M1 macrophages, these M2 TAMs are high-IL-10, TGF-β secreting-'anti-inflammatory'. In this review, we will discuss the modes of infiltration and switching of TAMs into M2 anti-inflammatory state in the TME to promote immunosuppression and inflammation-driven cancer.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.clim.2021.108875DOI Listing

Publication Analysis

Top Keywords

macrophages tams
8
macrophages
4
macrophages tumor
4
tumor inflammatory
4
inflammatory perspective
4
perspective inflammation
4
inflammation carefully
4
carefully co-ordinated
4
co-ordinated healing
4
healing immune
4

Similar Publications

The Role of Innate Priming in Modifying Tumor-associated Macrophage Phenotype.

Front Biosci (Landmark Ed)

December 2024

Mackenzie Cancer Research Group, Department of Pathology and Biomedical Science, University of Otago Christchurch, 8011 Christchurch, Aotearoa New Zealand.

Tumor-associated macrophages (TAMs) are innate immune cells that exert far reaching influence over the tumor microenvironment (TME). Depending on cues within the local environment, TAMs may promote tumor angiogenesis, cancer cell invasion and immunosuppression, or, alternatively, inhibit tumor progression via neoantigen presentation, tumoricidal reactive oxygen species generation and pro-inflammatory cytokine secretion. Therefore, TAMs have a pivotal role in determining tumor progression and response to therapy.

View Article and Find Full Text PDF

(. ) is widely used in traditional Chinese medicine due to its anti-tumor effects. .

View Article and Find Full Text PDF

To investigate CHD1L's impacts and molecular processes in hypoxic cutaneous squamous cell carcinoma. Monoclonal proliferation assays and CCK-8 were used to detect the proliferation capacity of A431 cells and Colon16 cells; wound healing experiments and Transwell assays were used to examine the migration and invasion capacity of A431 cells and Colon16 cells; angiogenesis experiments were conducted to assess the influence of A431 cells on angiogenesis; a nude mouse tumor xenograft experiment and HE staining were utilized to evaluate the impact of CHD1L on the progression of cutaneous squamous cell carcinoma; western blot analysis was performed to detect the expression of p-PI3K, p-AKT, and PD-L1 in A431 cells, as well as CD9, TSG101, PD-L1 in exosomes, and CD206, Arginase-1, iNOS, IL-1β, p-AKT, p-mTOR, VEGF, COX-2, MMP2, MMP9, p-ERK1/2 in tumor-associated macrophages. Under hypoxic conditions, CHD1L promoted the proliferation, migration, invasion, and angiogenesis of cutaneous squamous cell carcinoma.

View Article and Find Full Text PDF

Immunohistochemical Analysis of a1-Acid Glycoprotein and Tumor Associated Macrophages in Clear Cell Renal Cell Carcinoma.

Cancer Genomics Proteomics

December 2024

Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan;

Background/aim: α1-Acid glycoprotein (AGP), also known as orosomucoid, is an acute-phase protein that has been found increased in plasma of cancer patients. This study investigates the role of AGP expression in clear cell renal cell carcinoma (ccRCC) and its association with clinical outcomes.

Materials And Methods: We investigated the correlation between AGP levels and the prognosis of ccRCC through an analysis of The Cancer Genome Atlas (TCGA) database.

View Article and Find Full Text PDF

In situ production and precise release of bioactive GM-CSF and siRNA by engineered bacteria for macrophage reprogramming in cancer immunotherapy.

Biomaterials

December 2024

School of Life Sciences, Faculty of Medicine, Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology, Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, Tianjin University, Tianjin, 300072, China.

In the immunosuppressive tumor microenvironment (TME), tumor-associated macrophages (TAMs) predominantly exhibit an immunosuppressive M2 phenotype, which facilitates tumor proliferation and metastasis. Although current strategies aimed at reprogramming TAMs hold promise, their sustainability and effectiveness are limited due to repeated injections. Herein, a bacterial therapy platform containing two engineered strains was developed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!