Application of supercritical fluid technology for solid dispersion to enhance solubility and bioavailability of poorly water-soluble drugs.

Int J Pharm

College of Pharmacy, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea. Electronic address:

Published: December 2021

Many new chemical entities (NCEs) have been discovered with the development of the pharmaceutical industry. However, the main disadvantage of these drugs is their low aqueous solubility, which results in poor bioavailability, posing a challenge for pharmaceutical scientists in the field of drug development. Solid dispersion (SD) technology is one of the most successful techniques used to resolve these problems. SD has been widely used to improve the solubility and bioavailability of poorly water-soluble drugs using several methods such as melting, supercritical fluid (SCF), solvent evaporation, spray drying, hot-melt extrusion, and freeze-drying. Among them, SCF with carbon dioxide (CO) has recently attracted great attention owing to its enhanced dissolution and bioavailability with non-toxic, economical, non-polluting, and high-efficiency properties. Compared with the conventional methods using organic solvents in the preparation of the formulation (solvent evaporation method), SCF used CO to replace the organic solvent with high pressure to avoid the limitation of solvent residues. The solubility of a substance in CO plays an important role in the success of the formulation. In the present review, the various processes involved in SCF technology, application of SCF to prepare SD, and future perspectives of SCF are described.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijpharm.2021.121247DOI Listing

Publication Analysis

Top Keywords

supercritical fluid
8
solid dispersion
8
solubility bioavailability
8
bioavailability water-soluble
8
water-soluble drugs
8
solvent evaporation
8
scf
6
application supercritical
4
fluid technology
4
technology solid
4

Similar Publications

Lutein and Zeaxanthin: Source, Extraction, Stability, Bioactivity, and Functional Food Applications.

Curr Pharm Biotechnol

January 2025

Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan-45142, Saudi Arabia.

Nature has been acknowledged as a fundamental source of diverse bioactive molecules. Among natural carotenoids, lutein, zeaxanthin, and their oxidative metabolites are specifically deposited in the macular region of living organisms. Lutein and zeaxanthin are carotenoids primarily found in green leafy vegetables, eggs, and various fruits.

View Article and Find Full Text PDF

Quantitative Lipidomics of Biological Samples Using Supercritical Fluid Chromatography Mass Spectrometry.

Methods Mol Biol

January 2025

Division of Metabolomics, Medical Research Center for High Depth Omics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan.

Lipidomics has attracted attention in the discovery of unknown biomolecules and for capturing the changes in metabolism caused by genetic and environmental factors in an unbiased manner. However, obtaining reliable lipidomics data, including structural diversity and quantification data, is still challenging. Supercritical fluid chromatography (SFC) is a suitable technique for separating lipid molecules with high throughput and separation efficiency.

View Article and Find Full Text PDF

Supercritical CO, as an environmentally friendly and pollution-free fluid, has been applied in various EOR techniques such as CO flooding. However, the low viscosity of the gas leads to issues such as early breakthrough, viscous fingering, and gravity override in practical applications. Although effective mobility-control methods, such as CO WAG (water alternating gas)-, CO foam-, and gel-based methods, have been developed to mitigate these phenomena, they do not fundamentally solve the problem of the high gas-oil mobility ratio, which leads to reduced gas sweep efficiency.

View Article and Find Full Text PDF

A review of emerging techniques for pyrethroid residue detection in agricultural commodities.

Heliyon

January 2025

Laboratory of Vaccine and Biomolecules, Institute of Bioscience, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia.

Pyrethroid pesticides are essential for modern agriculture, helping to control pests and protect crops. However, due to growing concerns about their potential impact on human health and the environment, reliable detection methods are essential to ensure food safety. In this literature review, we explore the techniques used over the past decade to detect pyrethroid residues in agricultural products.

View Article and Find Full Text PDF

Efficient enantioselective separation is a critical process in pharmaceutical and chemical industries for the production of chiral compounds. Herein, we developed a novel approach for the efficient enantioselective separation of primary amines using supercritical fluid chromatography (SFC) with a commercially available SFC column, Cel1. The key factors of separation, including cosolvent ratios, total cosolvent percentages, and temperature, were systematically assessed in this study.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!