Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Methane, a potent greenhouse gas of global importance, has traditionally been considered as an end product of microbial methanogenesis of organic matter. Paradoxically, growing evidence has shown that some microbes, such as cyanobacteria, algae, fungi, purple non-sulfur bacteria, and cryptogamic covers, produce methane in oxygen-saturated aquatic and terrestrial ecosystems. The non-methanogenesis process could be an important potential contributor to methane emissions. This systematic review summarizes the knowledge of microorganisms involved in the non-methanogenesis process and the possible mechanisms of methane formation. Cyanobacteria-derived methane production may be attributed to either demethylation of methyl phosphonates or linked to light-driven primary productivity, while algae produce methane by utilizing methylated sulfur compounds as possible carbon precursors. In addition, fungi produce methane by utilizing methionine as a possible carbon precursor, and purple non-sulfur bacteria reduce carbon dioxide to methane by nitrogenase. The microbial methane distribution from the non-methanogenesis processes in aquatic and terrestrial environments and its environmental significance to global methane emissions, possible mechanisms of methane production in each open water, water-to-air methane fluxes, and the impact of climate change on microorganisms are also discussed. Finally, future perspectives are highlighted, such as establishing more in-situ experiments, quantifying methane flux through optimizing empirical models, distinguishing individual methane sources, and investigating nitrogenase-like enzyme systems to improve our understanding of microbial methane emission from the non-methanogenesis process.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2021.151362 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!