Objective: In this brief review, the authors focus on the effects of gestational exposures to urban air pollution on fetal development and neonatal outcomes.
Source Of Data: In this review the authors used PubMed, Web of Science and SciELO research platforms, analyzing papers from the last 30 years.
Summary Of The Findings: Epidemiological and experimental evidence agree that gestational exposure to air pollution in urban increases the risks for low birth weight, preterm birth, congenital malformation, intrauterine growth restriction, and neonatal mortality. Furthermore, exposures are associated with increased risks for preeclampsia, hypertension, gestational diabetes.
Conclusions: Therefore, it is time for greater involvement and engagement of the health sector in the discussion of public policies that may affect the quality of the environment, and that directly or indirectly impact the health of those who were not yet born.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9510928 | PMC |
http://dx.doi.org/10.1016/j.jped.2021.09.004 | DOI Listing |
Int J Environ Health Res
January 2025
Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
Previous research yields inconsistent findings on the association between air pollution and breast cancer risk, with no definitive causal relationship established. To address this, we conducted a two-sample Mendelian randomization study on data from the IEU open GWAS databases and the Breast Cancer Association Consortium to explore the potential link between air pollution (including PM, PM absorbance, PM, PM, NO, and NO) and breast cancer risk. We found that PM (odds ratio (OR) = 1.
View Article and Find Full Text PDFEnviron Monit Assess
January 2025
Municipal Budgetary Educational Institution "Lyceum of the City of Yurga", St. Kirova, 7, Yurga, Kemerovo Region, 652055, Russia.
In Kemerovo Region (Kuzbass, Southwest Siberia), there is the largest coal basin in Russia and one of the largest in the world. Active moss biomonitoring was applied to assess the impact of potentially toxic elements on air pollution in five urban areas of the region. In each of the chosen urban regions, the moss bags were exposed in November and December of 2022 at locations with varying degrees of anthropogenic pressure.
View Article and Find Full Text PDFEnviron Monit Assess
January 2025
Laboratory for Ecotoxicology and Environmental Forensics, University of Benin, PMB 1154, Benin City, Nigeria.
This research was carried out to assess the concentrations of carbon monoxide (CO) and formaldehyde (HCHO) in Edo State, Southern Nigeria, using remote sensing data. A secondary data collection method was used for the assessment, and the levels of CO and HCHO were extracted annually from Google Earth Engine using information from Sentinel-5-P satellite data (COPERNISCUS/S5P/NRTI/L3_) and processed using ArcMap, Google Earth Engine, and Microsoft Excel to determine the levels of CO and HCHO in the study area from 2018 to 2023. The geometry of the study location is highlighted, saved and run, and a raster imagery file of the study area is generated after the task has been completed with a 'projection and extent' in the Geographic Tagged Image File Format (.
View Article and Find Full Text PDFArch Microbiol
January 2025
Institute for Tropical Biology and Conservation, Universiti Malaysia Sabah, Jalan, UMS, 88400, Kota Kinabalu, Sabah, Malaysia.
The agricultural productivity and world-wide food security is affected by different phytopathogens, in which Fusarium is more destructive affecting more than 150 crops, now got resistance against many fungicides that possess harmful effects on environment such as soil health, air pollution, and human health. Fusarium fungicide resistance is an increasing concern in agricultural and environmental contexts, requiring a thorough understanding of its causes, implications, and management approaches. The mechanisms of fungicide resistance in Fusarium spp.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
Environmental Research Group, School of Public Health, Imperial College London, Sir Michael Uren Biomedical Engineering Hub, White City Campus, 80 Wood Lane, London W12 0BZ, United Kingdom.
This study explores the cobenefits of reduced nitrogen dioxide (NO), ozone (O), and particulate matter (PM), through net zero (NZ) climate policy in the UK. Two alternative NZ scenarios, the balanced net zero (BNZP) and widespread innovation (WI) pathways, from the UK Climate Change Committee's Sixth Carbon Budget, were examined using a chemical transport model (CTM). Under the UK existing policy, Business as Usual (BAU), reductions in NO and PM were predicted by 2030 due to new vehicle technologies but plateau by 2040.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!