The Beavis effect in quantitative trait locus (QTL) mapping describes a phenomenon that the estimated effect size of a statistically significant QTL (measured by the QTL variance) is greater than the true effect size of the QTL if the sample size is not sufficiently large. This is a typical example of the Winners' curse applied to molecular quantitative genetics. Theoretical evaluation and correction for the Winners' curse have been studied for interval mapping. However, similar technologies have not been available for current models of QTL mapping and genome-wide association studies where a polygene is often included in the linear mixed models to control the genetic background effect. In this study, we developed the theory of the Beavis effect in a linear mixed model using a truncated noncentral Chi-square distribution. We equated the observed Wald test statistic of a significant QTL to the expectation of a truncated noncentral Chi-square distribution to obtain a bias-corrected estimate of the QTL variance. The results are validated from replicated Monte Carlo simulation experiments. We applied the new method to the grain width (GW) trait of a rice population consisting of 524 homozygous varieties with over 300 k single nucleotide polymorphism markers. Two loci were identified and the estimated QTL heritability were corrected for the Beavis effect. Bias correction for the larger QTL on chromosome 5 (GW5) with an estimated heritability of 12% did not change the QTL heritability due to the extremely large test score and estimated QTL effect. The smaller QTL on chromosome 9 (GW9) had an estimated QTL heritability of 9% reduced to 6% after the bias-correction.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8570787PMC
http://dx.doi.org/10.1093/genetics/iyab115DOI Listing

Publication Analysis

Top Keywords

qtl
13
estimated qtl
12
qtl heritability
12
quantitative trait
8
trait locus
8
qtl mapping
8
qtl variance
8
winners' curse
8
linear mixed
8
truncated noncentral
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!