State of the art on the ultrasonic-assisted removal of environmental pollutants using metal-organic frameworks.

J Hazard Mater

Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471 Tabriz, Iran; Department of Materials Science and Nanotechnology Engineering, Faculty of Engineering, Near East University, 99138 Nicosia, Mersin 10, Turkey; Department of Material Science and Physical Chemistry of Materials, South Ural State University, 454080 Chelyabinsk, Russian Federation. Electronic address:

Published: February 2022

The environmental and health issues of drinking water and effluents released into nature are among the major area of contention in the past few decades. With the growth of ultrasound-based approaches in water and wastewater treatment, promising materials have also been considered to employ their advantages. Metal-organic frameworks (MOFs) are among the porous materials that have received great attention from researchers in recent years. Features such as high porosity, large specific surface area, electronic properties like semi-conductivity, and the capacity to coordinate with the organic matter have resulted in a substantial increase in scientific researches. This work deals with a comprehensive review of the application of MOFs for ultrasonic-assisted pollutant removal from wastewater. In this regard, after considering features and synthesis methods of MOFs, the mechanisms of several ultrasound-based approaches including sonocatalysis, sonophotocatalysis, and sono-adsorption are well assessed for removal of different organic compounds by MOFs. These methods are compared with some other water treatment processes with the application of MOFs in the absence of ultrasound. Also, the main concern about MOFs including environmental hazards and water stability is fully discussed and some techniques are proposed to reduce hazardous effects of MOFs and improve stability in humid/aqueous environments. Economic aspects for the preparation of MOFs are evaluated and cost estimates for ultrasonic-assisted AOP approaches were provided. Finally, the future outlooks and the new frontiers of ultrasonic-assisted methods with the help of MOFs in global environmental pollutant removal are presented.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2021.127558DOI Listing

Publication Analysis

Top Keywords

mofs
9
metal-organic frameworks
8
ultrasound-based approaches
8
application mofs
8
pollutant removal
8
state art
4
ultrasonic-assisted
4
art ultrasonic-assisted
4
removal
4
ultrasonic-assisted removal
4

Similar Publications

Entropy engineering activation of UiO-66 for boosting catalytic transfer hydrogenation.

Nat Commun

January 2025

State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 130012, Changchun, P. R. China.

High-entropy metal-organic frameworks (HE-MOFs) hold promise as versatile materials, yet current rare examples are confined to low-valence elements in the fourth period, constraining their design and optimization for diverse applications. Here, a novel high-entropy, defect-rich and small-sized (32 nm) UiO-66 (ZrHfCeSnTi HE-UiO-66) has been synthesized for the first time, leveraging increased configurational entropy to achieve high tolerance to doping with diverse metal ions. The lattice distortion of HE-UiO-66 induces high exposure of metal nodes to create coordination unsaturated metal sites with a concentration of 322.

View Article and Find Full Text PDF

Ln-MOFs, composed of lanthanide ions and functional organic ligands, are porous materials with tunable structures and unique luminescent properties. However, the interplay between ligand AIE properties and the framework's "antenna effect" on MOF morphology is understudied. Here, Tb-D-Cam-TPTB was synthesized via solvothermal method using TPTB (persulfurated arene) as the primary ligand, D-Cam as the auxiliary ligand, and Tb3+ as the metal ion.

View Article and Find Full Text PDF

This research presents a systematic review of the application of metal-organic frameworks (MOFs) to detect volatile organic compounds (VOCs). VOCs, compounds with high vapor pressure at ambient temperature and normal pressure, are widely present in a variety of industrial and living environments. VOCs are not only hazardous to the environment but also have a severe impact on human health.

View Article and Find Full Text PDF

Herein, a novel nanocomposite was developed to adjust the textural properties of metal-organic frameworks (MOFs) for adsorptive applications. To this end, nitrogen-doped carbon quantum dots/reduced graphene oxide nanocomposite (RC) was embedded into MIL-101(Cr) crystals, named RC-ML-x nanocomposites. The prepared nanoadsorbents were thoroughly characterized by different techniques.

View Article and Find Full Text PDF

A smartphone-integrated colorimetric sensor is introduced for the rapid detection of phenolic compounds, including 8-hydroquinone (HQ), p-nitrophenol (NP), and catechol (CC). This sensor relies on the peroxidase-mimicking activity of aspartate-based metal-organic frameworks (MOFs) such as Cu-Asp, Ce-Asp, and Cu/Ce-Asp. These MOFs facilitate the oxidation of a colorless substrate, 3,3',5,5'-tetramethylbenzidine (TMB), by reactive oxygen species (ROS) derived from hydrogen peroxide (HO), resulting in the formation of blue-colored oxidized TMB (ox-TMB).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!