The GABA receptor is an important epilepsy-associated candidate gene, and has always been a focus in etiology and in the treatment of epilepsy. This study explores the genetic association between GABA receptor gene polymorphisms and epilepsy in a cohort of the Pakistani population. A case-control study was conducted on 150 patients with idiopathic generalized epilepsy (IGE) and 150 controls. Blood samples were collected, and genomic DNA was extracted and amplified using polymerase chain reaction (PCR). The amplified products were subsequently genotyped by Sanger sequencing and the results were analyzed using the chi-square test. Among the five mutational sites observed, two GABRA1 (rs2279020 and novel c.1016_1017insT) and two GABRA6 (rs3219151 and novel c.1344C>G) were found to be significantly associated with IGE. Amino acid alignment showed that a novel insertion mutation, c.1016_1017insT, in GABRA1 disrupted the reading frame and was possibly damaging, whereas c.1344C>G in GABRA6 was responsible for a synonymous mutation. Therefore, both the GABA receptor genes may play critical roles in the development of epilepsy in Pakistani patients.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.seizure.2021.10.013 | DOI Listing |
J Agric Food Chem
January 2025
Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, California 94158, United States.
Pesticides, including insecticides, are indispensable for large-scale agriculture. Modulating chloride ion channels has proven highly successful as a mode of action (MoA) for insect management. Identifying new ligands for these channels affords opportunities for the potential development of new insecticide products.
View Article and Find Full Text PDFNeuromolecular Med
January 2025
Biochemistry and Molecular Biology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221 005, India.
Hypoxia is a significant stressor, and stabilized hypoxia-inducible factor-1α (HIF-1α) regulates the expression of numerous genes, leading to various biochemical, molecular, physiological and genomic changes. The body's oxygen-sensing system activates gene expression to protect brain tissues from hypoxia. Gamma-aminobutyric acid, an inhibitory neurotransmitter, regulates brain excitability during hypoxia through the activation of HIF-1 α.
View Article and Find Full Text PDFStem Cell Res Ther
January 2025
Department of Cell Biology and Histology, University of the Basque Country UPV/EHU, Leioa, Bizkaia, 48940, Spain.
Background And Aim: Human dental pulp stem cells (hDPSCs) constitute a promising alternative for central nervous system (CNS) cell therapy. Unlike other human stem cells, hDPSCs can be differentiated, without genetic modification, to neural cells that secrete neuroprotective factors. However, a better understanding of their real capacity to give rise to functional neurons and integrate into synaptic networks is still needed.
View Article and Find Full Text PDFPharmacol Res
January 2025
Center for Brain Research, Department of Molecular Neurosciences, Medical University Vienna, Vienna, Austria. Electronic address:
α6-containing GABA receptors (α6GABARs) are strongly expressed in cerebellar granule cells and are of central importance for cerebellar functions. The cerebellum not only is involved in regulation of motor activity, but also in regulation of thought, cognition, emotion, language, and social behavior. Activation of α6GABARs enhances the precision of sensory inputs, enables rapid and coordinated movement and adequate responses to the environment, and protects the brain from information overflow.
View Article and Find Full Text PDFFront Neurosci
January 2025
The Key Laboratory of Anesthesia and Organ Protection, The Key Laboratory of Brain Science, Zunyi Medical University, Zunyi, China.
Background: The ventrolateral preoptic nucleus (VLPO) is a crucial regulator of sleep, and its neurons are implicated in both sleep-wake regulation and anesthesia-induced loss of consciousness. Propofol (PRO), a widely used intravenous anesthetic, modulates the activity of VLPO neurons, but the underlying mechanisms, particularly the role of dopaminergic receptors, remain unclear.
Objective: This study aimed to investigate the effects of PRO on NA (-) neurons in the VLPO and to determine the involvement of D1 and D2 dopaminergic receptors in mediating these effects.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!