On the corrosion, stress corrosion and cytocompatibility performances of ALD TiO and ZrO coated magnesium alloys.

J Mech Behav Biomed Mater

School of Biological Sciences, Health and Life Sciences Building, University of Reading, Whiteknights, RG6 6EX, Reading, United Kingdom; Department of Biology, University of Padova, Via Ugo Bassi 58/b, 35131, Padova, Italy.

Published: January 2022

AI Article Synopsis

  • Magnesium alloys are being researched for temporary implants, but their high corrosion rates and issues like stress corrosion cracking (SCC) hinder their wider use.
  • Atomic Layer Deposition (ALD) is being explored as a promising coating technology to address these problems, showing potential in reducing corrosion rates and SCC susceptibility.
  • In this study, the focus is on the effects of 100 nm thick ALD TiO and ZrO coatings on AZ31 alloy, revealing that the ZrO coating significantly enhances corrosion resistance and cytocompatibility for biological applications.

Article Abstract

Magnesium alloys are increasingly studied as materials for temporary implants. However, their high corrosion rate and susceptibility to corrosion-assisted cracking phenomena, such as stress corrosion cracking (SCC), continue to prevent their mainstream use. Recently, coatings have been considered to provide an effective solution to these issues and researchers have focused their attention on Atomic Layer Deposition (ALD). ALD stands out as a coating technology due to the outstanding film conformality and density achievable, and has shown encouraging preliminary results in terms of reduced corrosion rate and reduced SCC susceptibility. Here, we contribute to the ongoing interest in ALD-coated Mg alloys, providing a comprehensive characterisation of the effect of 100 nm thick ALD TiO and ZrO coatings on the corrosion behaviour and SCC susceptibility of AZ31 alloy. Moreover, we also investigate the effect of these coatings on the induced biological response. Our results suggest that the ALD coatings can improve the corrosion and SCC resistance of the Mg alloy, with the ZrO ALD coating showing the best improvements. We suggest that the different corrosion behaviours are the cause of the cytocompatibility results (only the ZrO ALD coating was found to meet the demands for cellular applications). Finally, we leverage on considerations about the coatings' wettability, electrochemical stability and surface integrity to justify the different results.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jmbbm.2021.104945DOI Listing

Publication Analysis

Top Keywords

corrosion
8
stress corrosion
8
ald tio
8
tio zro
8
magnesium alloys
8
corrosion rate
8
scc susceptibility
8
zro ald
8
ald coating
8
ald
7

Similar Publications

Transition Metal-Coordinated Polymer Achieves Stable Seawater Oxidation over NiFe Layered Double Hydroxide.

Inorg Chem

January 2025

College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, Shandong 250014, China.

Seawater electrolysis has emerged as a promising approach for the generation of hydrogen energy, but the production of deleterious chlorine derivatives (e.g., chloride and hypochlorite) presents a significant challenge due to the severe corrosion at the anode.

View Article and Find Full Text PDF

Zn(TFSI)-Mediated Ring-Opening Polymerization for Electrolyte Engineering Toward Stable Aqueous Zinc Metal Batteries.

Nanomicro Lett

January 2025

Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Institute of New Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Fudan University, Shanghai, 200433, People's Republic of China.

Practical Zn metal batteries have been hindered by several challenges, including Zn dendrite growth, undesirable side reactions, and unstable electrode/electrolyte interface. These issues are particularly more serious in low-concentration electrolytes. Herein, we design a Zn salt-mediated electrolyte with in situ ring-opening polymerization of the small molecule organic solvent.

View Article and Find Full Text PDF

A point mutation in a like gene in enhances the anticorrosion activity.

Appl Environ Microbiol

January 2025

Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China.

The protection of steel based on microbial biomineralization has emerged as a novel and eco-friendly strategy for corrosion control. However, the molecular basis of the biomineralization process in mineralization bacteria remains largely unexplored. We previously reported that EPS+ strain provides protection against steel corrosion by forming a hybrid biomineralization film.

View Article and Find Full Text PDF

Dual-Induced Directed Deposition Mechanism Based on Anionic Surfactants Enables Long Cycle Aqueous Zinc Ion Batteries.

Small Methods

January 2025

School of Physical Science and Technology, Center for Energy Conversion Materials & Physics (CECMP), Jiangsu Key Laboratory of Thin Films, Soochow University, Suzhou, 215006, China.

Aqueous zinc-ion battery has low cost, and environmental friendliness, emerging as a promising candidate for next-generation battery systems. However, it still suffers from a limited cycling life, caused by dendritic Zn growth and severe side reactions. Recent research highlights that the Zn (002) crystal plane exhibits superior anti-corrosive properties and a horizontal growth pattern.

View Article and Find Full Text PDF

Agricultural waste or agro-waste, including natural fibers and particles from various crop parts, is increasingly recognized as a significant contributor to environmental issues. However, from a circular economy perspective, these materials present an opportunity to be repurposed into new, eco-friendly products. The present study, specifically focuses on understanding the effect of different factors, such as the particulate loading and the size (coir and hBN - 1 to 5 wt%; Coir Powder size (100-200 μm) of the particles on composite's corrosion rates and water absorption properties.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!