Osteochondral defect repair in osteoarthritis (OA) remains an unsolved clinical problem due to the lack of enough seed cells in the defect and chronic inflammation in the joint. To address this clinical need, we designed a bone marrow-derived mesenchymal stem cell (BMSC)-laden 3D-bioprinted multilayer scaffold with methacrylated hyaluronic acid (MeHA)/polycaprolactone incorporating kartogenin and β-TCP for osteochondral defect repair within each region. BMSC-laden MeHA was designed to actively introduce BMSCs in situ, and diclofenac sodium (DC)-incorporated matrix metalloproteinase-sensitive peptide-modified MeHA was induced on the BMSC-laden scaffold as an anti-inflammatory strategy. BMSCs in the scaffolds survived, proliferated, and produced large amounts of cartilage-specific extracellular matrix in vitro. The effect of BMSC-laden scaffolds on osteochondral defect repair was investigated in an animal model of medial meniscectomy-induced OA. BMSC-laden scaffolds facilitated chondrogenesis by promoting collagen II and suppressed interleukin 1β in osteochondral defects of the femoral trochlea. Congruently, BMSC-laden scaffolds significantly improved joint function of the injured leg with respect to the ground support force, paw grip force, and walk gait parameters. Therefore, this research demonstrates the potential of 3D-bioprinted BMSC-laden scaffolds to simultaneously inhibit joint inflammation and promote cartilage defect repair in OA joints.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biomaterials.2021.121216 | DOI Listing |
Mol Biol Rep
January 2025
Pediatric Cell, and Gene Therapy Research Center Gene, Cell and Tissue Research Institute, Tehran University of Medical Sciences, Tehran, Iran.
Bone serves as a fundamental structural component in the body, playing pivotal roles in support, protection, mineral supply, and hormonal regulation. However, critical-sized bone injuries have become increasingly prevalent, necessitating extensive medical interventions due to limitations in the body's capacity for self-repair. Traditional approaches, such as autografts, allografts, and xenografts, have yielded unsatisfactory results.
View Article and Find Full Text PDFJ Biomater Appl
January 2025
State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan, China.
In the repair of large bone defects, loss of the periosteum can result in diminished osteoinductive activity, nonunion, and incomplete regeneration of the bone structure, ultimately compromising the efficiency of bone regeneration. Therefore, the research and development of tissue-engineered periosteum which can replace the periosteum function has become the focus of current research. The functionalized electrospinning periosteum is expected to mimic the natural periosteum and enhance bone repair processes more effectively.
View Article and Find Full Text PDFFoot Ankle Int
January 2025
Department of Foot Surgery, Schulthess Klinik, Zurich, Switzerland.
Background: Operative management of chronic Achilles tendinopathy with large defects can be surgically challenging. Concerns exist regarding transosseous transfer of the flexor hallucis longus (FHL) tendon because of the shortened lever arm of flexion and weakening of the big toe. The aim of this study was to demonstrate the 2-year outcome of transosseous FHL transfer for the treatment of large Achilles tendon defects.
View Article and Find Full Text PDFJ Clin Med
January 2025
Department of Sciences, Section of Biomedical Sciences and Technologies, Roma Tre University, Viale Marconi 446, 00146 Rome, Italy.
: Diabetes is a well-recognised factor inducing a plethora of corneal alterations ranging from dry eye to reduced corneal sensibility, epithelial defects, and reduced cicatrisation. This cohort study aimed to assess the efficacy of a novel ophthalmic solution combining cross-linked hyaluronic acid (CHA), chondroitin sulfate (CS), and inositol (INS) in managing diabetes-induced corneal alterations. Specifically, it evaluated the solution's impact on the tear breakup time (TBUT), the ocular surface disease index (OSDI), and corneal sensitivity after three months of treatment.
View Article and Find Full Text PDFJ Clin Med
December 2024
Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, 8036 Graz, Austria.
Non-healing soft tissue defects pose challenges to treating physicians. Microsurgical reconstruction is a treatment option for achieving wound closure and limb salvage. These free tissue transfers are often challenging due to associated risk factors.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!