High demand of food for rapidly increasing population requires novel but ecofriendly fertilizers. Green reducing and capping agents are being explored to minimize production cost and toxicity of chemicals in synthesis of nanoparticles (NPs) which could be used to increase the production of crops and plants. In present research, Zinc Oxide Nanoparticles (ZnO NPs) are produced by employing an eco-friendly, simple and efficient green route using peel extract of . The optical properties of green synthesized ZnO NPs are explored by UV-Visible and Photoluminance spectroscopies where NPs presented 3.21 to 3.13 eV band gap. The morphology and purity of the ZnO NPs are analyzed by scanning electron microscopy (SEM), X-ray diffraction technique (XRD) and energy dispersive X-ray spectroscopy (EDX), respectively. The spherical like ZnO NPs having 23-90 nm size exhibited hexagonal structure with 8.89 to 8.62 nm crystallite size. Fourier transform infrared spectroscopy (FTIR) explores the existence of specific functional groups which are responsible for stabilization, capping and reduction during synthesis of nanoparticles. The green synthesized ZnO NPs are tested for seed germination of (black mustard) seeds at standard temperature and pressure. The activity shows that germination percentage of the seeds is enhanced 100% and seedling vigor index 16.45 after treatment with ZnO NPs and can be controlled by the concentration of NPs. Therefore, it can be expected that ZnO NPs can serve as the cost effective and ecofriendly nano-fertilizers in agriculture.

Download full-text PDF

Source
http://dx.doi.org/10.1166/jnn.2021.19015DOI Listing

Publication Analysis

Top Keywords

zno nps
28
nps
10
zinc oxide
8
oxide nanoparticles
8
peel extract
8
seed germination
8
synthesis nanoparticles
8
green synthesized
8
synthesized zno
8
zno
7

Similar Publications

Decoding Plant-Based Green Synthesis of Zinc Oxide Nanoparticles.

Chem Biodivers

January 2025

Physics Department, Centre National de la Recherche Scientifique (Unité Mixte de Recherche 6283), Institut des Molécules et Matériaux du Mans, Le Mans Université, Le Mans, France.

This study presents, for the first time, the comparison of behavior between two commonly found plant species, their extracts, and their major constituents (glucose and sucrose constituting over 70% of their dried extract) to synthesize zinc oxide (ZnO) nanoparticles (NPs) from zinc nitrate hexahydrate. The findings underscore the critical role of sugars as key constituents in facilitating this synthesis. This research demonstrates that the process can occur at relatively low temperatures (120°C).

View Article and Find Full Text PDF

Extracts of medicinal seeds can be used to synthesize nanoparticles (NPs) in more environmentally friendly ways than physical or chemical ways. For the first time, aqueous extract from unexploited grape seeds was used in this study to create Se/ZnO NPS utilizing a green technique, and their antimicrobial activity, cytotoxicity, antioxidant activities, and plant bio stimulant properties of the economic Vicia faba L. plant were evaluated.

View Article and Find Full Text PDF
Article Synopsis
  • Chickpeas and apricots are economically significant crops that suffer from severe fungal infections, traditionally managed with chemical fungicides that pose health and environmental risks.
  • Myco-synthesized (from fungi) and bacteria-synthesized zinc oxide (ZnO) nanoparticles were compared for their antifungal effectiveness against specific pathogens affecting these crops.
  • Results showed that myco-synthesized ZnO nanoparticles exhibited better antifungal properties at lower concentrations, highlighting the need for further research to enhance their application in agriculture as sustainable alternatives to chemical fungicides.
View Article and Find Full Text PDF

Solution combustion synthesis of ZnO doped CuO nanocomposite for photocatalytic and sensor applications.

Sci Rep

January 2025

Department of Mechanical and Industrial Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.

ZnO-doped CuO nanocomposites (CuO-ZnO NPs) of 1, 3, and 5 mol% were prepared by the solution combustion method using ODH as a fuel (Oxlyl-hydrazide) at 500 °C and calcining at 1000 °C for two hours and the Structural, photocatalytic, and electrochemical properties were investigated by experimental and theoretical methods. X-ray diffraction (XRD) patterns revealed a crystallite size (D) range of 25 to 31 nm for pure CuO and 1, 3, and 5 mol% CuO-ZnO NPs. According to calculations, the optical energy band gap (Eg) of the NPs is between 2.

View Article and Find Full Text PDF

Synthesis of an antimicrobial chitosan film impregnated with ZnO nanoparticles phytosynthesized with Ruta graveolens plant extract.

Microb Pathog

December 2024

Tecnológico Nacional de México / Instituto Tecnológico de Toluca, División de Estudios de Posgrado e Investigación, Av. Tecnológico S/N Col. Agrícola Bellavista, Metepec, México, C.P. 52149.

In this study, biopolymer of chitosan-based films were synthesized, which were impregnated with zinc oxide nanoparticles (ZnO NPs) at concentrations of 0, 1, 5 and 10 % w:v to obtain a film with microbicide properties and non-toxic for humans. The ZnO NPs were phytosynthesized with ethanolic extract of Ruta graveolens, by UV-Vis spectrophotometry and Tauc equation were estimated their Band gap energy=3.37 eV at wavelength of 302 nm.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!