Resveratrol is a natural polyphenolic compound with a wide range of biological activities such as antioxidant, anti-carcinogenic, anti-obesity, anti-aging, anti-inflammatory, immunomodulatory properties. Accumulating evidence suggests that resveratrol has pharmacological benefits in life-threatening diseases, including cardiovascular disease, cancer, diabetes, and neurodegenerative diseases. Resveratrol is widely known for its anti-inflammatory properties; however, signaling mechanisms of anti-inflammatory action are still elusive. Studies have illustrated that resveratrol can control different regulatory pathways by altering the expression and consequently regulatory effects of microRNAs. Our study aims to clarify the regulatory mechanisms of resveratrol in its anti-inflammatory features in the N9 microglial cell line. Our results demonstrated that resveratrol inhibits LPS- and ATP-activated NLRP3 inflammasome and protects microglial cells upon oxidative stress, proinflammatory cytokine production, and pyroptotic cell death resulting from inflammasome activation. Additionally, resveratrol inhibits nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) signaling and activates AMPK/Sirt1 pathways. Furthermore, our results indicated that resveratrol downregulated inflammasome-induced miR-155 expression. Then, inhibition of AMPK and Sirt1 pathways has significantly reversed protective effect of resveratrol on miR-155 expression. To sum up, our results suggest that resveratrol suppresses the NLRP3 inflammasome and miR-155 expression through AMPK and Sirt1 pathways in microglia.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12640-021-00435-wDOI Listing

Publication Analysis

Top Keywords

mir-155 expression
16
resveratrol inhibits
12
resveratrol
11
resveratrol anti-inflammatory
8
nlrp3 inflammasome
8
ampk sirt1
8
sirt1 pathways
8
expression
5
inhibits nlrp3
4
nlrp3 inflammasome-induced
4

Similar Publications

Background: Nephrotic syndrome is a common cause of kidney diseases in children. Many studies have examined the association of microRNAs playing potential roles in many pathophysiological functions. We investigated the expression pattern of the microRNAs miR-17-5P, miR-155p, miR-424-5p in children with steroid sensitive nephrotic syndrome (SSNS) and steroid resistance nephrotic syndrome (SRNS), along with the healthy subjects.

View Article and Find Full Text PDF

Breast cancer treatment has advanced significantly, particularly for estrogen receptor-positive (ER+) tumors. Tamoxifen, an estrogen antagonist, is widely used; however, approximately 40% of patients develop resistance. Recent studies indicate that microRNAs, especially miR-155, play a critical role in this resistance.

View Article and Find Full Text PDF

Neuroendocrine neoplasms (NENs) are a diverse group originating from endocrine cells/their precursors in pancreas, small intestine, or lung. The key serum marker is chromogranin A (CgA). While commonly elevated in patients with NEN, its prognostic value is still under discussion.

View Article and Find Full Text PDF

MicroRNA-155 as Biomarker and Its Diagnostic Value in Breast Cancer: A Systematic Review.

World J Oncol

February 2025

Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia.

The investigation of microRNAs (miRNAs) for the purpose of identifying biomarkers and new treatments for breast cancer has been gaining traction from scientists in recent years. Of all the miRNAs, miR-155 has been reportedly involved in breast cancer development as it regulates various cellular processes such as glucose uptake, proliferation, metastasis, and migration. Various efforts have been done towards researching miR-155 as a biomarker in breast cancer; however, the results were varied.

View Article and Find Full Text PDF

Circulating microRNAs as Biomarkers of Various Forms of Epilepsy.

Med Sci (Basel)

January 2025

Department of Medical Genetics, Clinical Neurophysiology of Postgraduate Education, V.F. Voyno-Yasenetsky Krasnoyarsk State Medical University, Russian National Research, Krasnoyarsk 660022, Russia.

: Epilepsy is a group of disorders characterized by a cluster of clinical and EEG signs leading to the formation of abnormal synchronous excitation of neurons in the brain. It is one of the most common neurological disorders worldwide; and is characterized by aberrant expression patterns; both at the level of matrix transcripts and at the level of regulatory RNA sequences. Aberrant expression of a number of microRNAs can mark a particular epileptic syndrome; which will improve the quality of differential diagnosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!