Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
This study evaluates the potential of kriging-based (kriging and kriging-logistic) and machine learning models (MARS, GBRT, and ANN) in predicting the effluent arsenic concentration of a wastewater treatment plant. Two distinct input combination scenarios were established, using seven quantitative and qualitative independent influent variables. In the first scenario, all of the seven independent variables were taken into account for constructing the data-driven models. For the second input scenario, the forward selection k-fold cross-validation method was employed to select effective explanatory influent parameters. The results obtained from both input scenarios show that the kriging-logistic and machine learning models are effective and robust. However, using the feature selection procedure in the second scenario not only made the architecture of the model simpler and more effective, but also enhanced the performance of the developed models (e.g., around 7.8% performance enhancement of the RMSE). Although the standard kriging method provided the least good predictive results (RMSE = 0.18 ug/l and NSE=0.75), it was revealed that the kriging-logistic method gave the best performance among the applied models (RMSE = 0.11 ug/l and NSE=0.90).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11356-021-16916-6 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!