Enhancers are vitally important during embryonic development to control the spatial and temporal expression of genes. Recently, large scale genome projects have identified a vast number of putative developmental regulatory elements. However, the proportion of these that have been functionally assessed is relatively low. While enhancers have traditionally been studied using reporter assays, this approach does not characterise their contribution to endogenous gene expression. We have studied the murine Nestin (Nes) intron 2 enhancer, which is widely used to direct exogenous gene expression within neural progenitor cells in cultured cells and in vivo. We generated CRISPR deletions of the enhancer region in mice and assessed their impact on Nes expression during embryonic development. Loss of the Nes neural enhancer significantly reduced Nes expression in the developing CNS by as much as 82%. By assessing NES protein localization, we also show that this enhancer region contains repressor element(s) that inhibit Nes expression within the vasculature. Previous reports have stated that Nes is an essential gene, and its loss causes embryonic lethality. We also generated 2 independent Nes null lines and show that both develop without any obvious phenotypic effects. Finally, through crossing of null and enhancer deletion mice we provide evidence of trans-chromosomal interaction of the Nes enhancer and promoter.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8570527 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0258538 | PLOS |
Histone H3K9 methylation (H3K9me) by Setdb1 silences retrotransposons (rTE) by sequestering them in constitutive heterochromatin. Atf7IP is a constitutive binding partner of Setdb1 and is responsible for Setdb1 nuclear localization, activation and chromatin recruitment. However, structural details of the Setdb1/Atf7IP interaction have not been evaluated.
View Article and Find Full Text PDFBiochem Biophys Res Commun
January 2025
Department of Chemical Engineering, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8531, Japan. Electronic address:
Acyl-acyl carrier protein (acyl-ACP) reductase (AAR) is a crucial enzyme in alka(e)ne production by recombinant Escherichia coli (E. coli). Engineered AAR expressed in E.
View Article and Find Full Text PDFNat Biotechnol
November 2024
New York Genome Center, New York, NY, USA.
Methods Mol Biol
November 2024
Department of Cancer Biology, Sols-Morreale Biomedical Research Institute (IIBM), Spanish National Research Council (CSIC), Universidad Autónoma de Madrid (UAM), Madrid, Spain.
FOXO3 is a transcription factor that mainly exerts its functions in the cell nucleus. The amino acid sequence of FOXO3 contains a nuclear localization sequence (NLS) and a nuclear export sequence (NES) allowing for nuclear/cytoplasmic shuttling that plays an important role in regulating FOXO3 activity. Nuclear accumulation of FOXO3 proteins can be the result of translocation to the nucleus triggered by upstream regulatory input or trapping of FOXO3 within the nucleus through the inhibition of its nuclear export via the receptor CRM1.
View Article and Find Full Text PDFJ Inflamm Res
November 2024
Department of Pancreatic and Gastrointestinal Surgery Division, Ningbo No.2 hospital, Ningbo, People's Republic of China.
Background: Inflammatory bowel disease (IBD) is affected by interactions between intestinal microbial factors, abnormal inflammation, and an impaired intestinal mucosal barrier. Neutrophils (NE) are key players in IBD. () is reported to contribute to IBD progression.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!