Spectral Statistics of Non-Hermitian Matrices and Dissipative Quantum Chaos.

Phys Rev Lett

Princeton Center for Theoretical Science, Princeton University, Princeton, New Jersey 08544, USA.

Published: October 2021

We propose a measure, which we call the dissipative spectral form factor (DSFF), to characterize the spectral statistics of non-Hermitian (and nonunitary) matrices. We show that DSFF successfully diagnoses dissipative quantum chaos and reveals correlations between real and imaginary parts of the complex eigenvalues up to arbitrary energy scale (and timescale). Specifically, we provide the exact solution of DSFF for the complex Ginibre ensemble (GinUE) and for a Poissonian random spectrum (Poisson) as minimal models of dissipative quantum chaotic and integrable systems, respectively. For dissipative quantum chaotic systems, we show that the DSFF exhibits an exact rotational symmetry in its complex time argument τ. Analogous to the spectral form factor (SFF) behavior for Gaussian unitary ensemble, the DSFF for GinUE shows a "dip-ramp-plateau" behavior in |τ|: the DSFF initially decreases, increases at intermediate timescales, and saturates after a generalized Heisenberg time, which scales as the inverse mean level spacing. Remarkably, for large matrix size, the "ramp" of the DSFF for GinUE increases quadratically in |τ|, in contrast to the linear ramp in the SFF for Hermitian ensembles. For dissipative quantum integrable systems, we show that the DSFF takes a constant value, except for a region in complex time whose size and behavior depend on the eigenvalue density. Numerically, we verify the above claims and additionally show that the DSFF for real and quaternion real Ginibre ensembles coincides with the GinUE behavior, except for a region in the complex time plane of measure zero in the limit of large matrix size. As a physical example, we consider the quantum kicked top model with dissipation and show that it falls under the Ginibre universality class and Poisson as the "kick" is switched on or off. Lastly, we study spectral statistics of ensembles of random classical stochastic matrices or Markov chains and show that these models again fall under the Ginibre universality class.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.127.170602DOI Listing

Publication Analysis

Top Keywords

dissipative quantum
20
spectral statistics
12
complex time
12
dsff
9
statistics non-hermitian
8
quantum chaos
8
spectral form
8
form factor
8
quantum chaotic
8
integrable systems
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!