Sweat analysis provides an alternative and noninvasive way of clinical diagnostics. However, sampling and transferring sweat-derived samples to analytical instruments is challenging. In this report, we demonstrate a method utilizing a flat disc-shaped sampling probe, and a compatible re-extraction apparatus coupled online with extractive electrospray ionization (EESI) mass spectrometry (MS). The probe enables sampling of metabolites from a skin area of ∼2.2 cm. The subsequent online re-extraction and analysis by EESI-MS further mitigates matrix effects caused by sweat components, thus eliminating sample preparation steps. The total analysis time is only 6 min. We have optimized the key parameters of the system, including flow rate of the nebulizing gas in ESI, pressure of the nebulizing gas in pneumatic sample nebulizer, flow rate of the solvent in ESI, and composition of extractant. The standard solutions (0.1 mL) were supplemented with 0.04 M sodium chloride to mimic the matrix effect normally observed in sweat samples. The method has been characterized with four chemical standards (positive-ion mode of histidine, leucine, urocanic acid; negative-ion mode of lactic acid). The limits of detection range from 1.09 to 95.9 nmol. We have further demonstrated the suitability of the method for analysis of sweat. An attempt was made to identify some of the recorded signals by product-ion scan and accurate/exact mass matching.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jasms.1c00243 | DOI Listing |
Zoological Lett
February 2024
National Institute of Water and Atmospheric Research (NIWA), Wellington, New Zealand.
Pachyzoidae is a little-known family of deep-sea ctenostome Bryozoa that until now was monospecific for Pachyzoon atlanticum. Originally described from the Atlantic Ocean, the genus was also found off southeastern New Caledonia in deep waters of the geological continent of Zealandia. Pachyzoon atlanticum forms globular to flat round colonies, living on soft, muddy to sandy bottoms with a few rhizoidal cystid appendages extending from the basal, substrate-oriented side.
View Article and Find Full Text PDFAdv Exp Med Biol
July 2023
Department of Ophthalmology, Duke University Medical Center, Durham, NC, USA.
The light-sensitive outer segment organelle of photoreceptor cells contains a stack of hundreds of flat, disc-shaped membranes called discs. The rims of these discs contain a photoreceptor-specific tetraspanin protein peripherin-2 (also known as rds or PRPH2). Mutations in the PRPH2 gene lead to a wide variety of inherited retinal degenerations in humans.
View Article and Find Full Text PDFMaterials (Basel)
December 2022
AC2T research GmbH, Viktor-Kaplan-Straße 2c, 2700 Wiener Neustadt, Austria.
Soft polymers such as the investigated polyurethane, characterized by low Young's moduli and prone to high shear deflection, are frequently applied in pneumatic cylinders. Their performance and lifetime without external lubrication are highly determined by the friction between seal and shaft and the wear rate. FEM simulation has established itself as a tool in seal design processes but requires input values for friction and wear depending on material, load, and velocity.
View Article and Find Full Text PDFJ Am Soc Mass Spectrom
December 2021
Department of Chemistry, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu 30013, Taiwan.
Sweat analysis provides an alternative and noninvasive way of clinical diagnostics. However, sampling and transferring sweat-derived samples to analytical instruments is challenging. In this report, we demonstrate a method utilizing a flat disc-shaped sampling probe, and a compatible re-extraction apparatus coupled online with extractive electrospray ionization (EESI) mass spectrometry (MS).
View Article and Find Full Text PDFJ Appl Clin Med Phys
June 2020
Thayer School of Engineering, Dartmouth College, Hanover, NH, USA.
Purpose: The novel scintillator-based system described in this study is capable of accurately and remotely measuring surface dose during Total Skin Electron Therapy (TSET); this dosimeter does not require post-exposure processing or annealing and has been shown to be re-usable, resistant to radiation damage, have minimal impact on surface dose, and reduce chances of operator error compared to existing technologies e.g. optically stimulated luminescence detector (OSLD).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!