Penta-twinned metal nanowires are finding widespread application in existing and emerging technologies. However, little is known about their growth mechanisms. We probe the origins of chloride- and alkylamine-mediated, solution-phase growth of penta-twinned Cu nanowires from first-principles using multiscale theory. Using quantum density functional theory (DFT) calculations, we characterize the binding and surface diffusion of Cu atoms on chlorine-covered Cu(100) and Cu(111) surfaces. We find stronger binding and slower diffusion of Cu atoms on chlorinated Cu(111) than on chlorinated Cu(100), which is a reversal of the trend for bare Cu surfaces. We also probe interfacet diffusion and find that this proceeds faster from Cu(100) to Cu(111) than the reverse. Using the DFT rates for hopping between individual sites at Ångstrom scales, we calculate coarse-grained, interfacet rates for nanowires of various lengths─up to hundreds of micrometers─and diameters in the 10 nm range. We predict nanowires with aspect ratios of ∼100, based on surface diffusion alone. We also account for the influence of a self-assembled alkylamine layer that covers most of the {100} facets, but is absent or thin and disordered on the {111} facets and in an "end zone" near the {100}/{111} boundary. With an end zone, we predict a wide range of nanowire aspect ratios in the experimental ranges. Our work reveals the mechanisms by which a halide─chloride─promotes the growth of high-aspect-ratio nanowires.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsnano.1c07425 | DOI Listing |
Pharmaceutics
January 2025
Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, 9713 AV Groningen, The Netherlands.
The application of dissolving microneedle arrays (DMNAs) is an emerging trend in drug and vaccine delivery as an alternative for hypodermic needles or other less convenient drug administration methods. The major benefits include, amongst others, that no trained healthcare personnel is required and that the recipient experiences hardly any pain during administration. However, for a successful drug or vaccine delivery from the DMNA, the microneedles should be inserted intact into the skin.
View Article and Find Full Text PDFPharmaceutics
January 2025
Department of Mathematics, Visva-Bharati University, Santiniketan 731235, WB, India.
Microneedle(MN)-based drug delivery is one of the potential approaches to overcome the limitations of oral and hypodermic needle delivery. An in silico model has been developed for hollow microneedle (HMN)-based drug delivery in the skin and its subsequent absorption in the blood and tissue compartments in the presence of interstitial flow. The drug's reversible specific saturable binding to its receptors and the kinetics of reversible absorption across the blood and tissue compartments have been taken into account.
View Article and Find Full Text PDFPharmaceutics
December 2024
Department of Applied Chemistry, Tokyo Metropolitan University, Tokyo 192-0397, Japan.
: This study aimed to design and evaluate Chol-PEG micelles and Chol-PEG vesicles as drug delivery system (DDS) carriers and inhibitors of amyloid-β (Aβ) aggregation, a key factor in Alzheimer's disease (AD). : The physical properties of Chol-PEG assemblies were characterized using dynamic light scattering (DLS), electrophoretic light scattering (ELS), and transmission electron microscopy (TEM). Inhibitory effects on Aβ aggregation were assessed via thioflavin T (ThT) assay, circular dichroism (CD) spectroscopy, and native polyacrylamide gel electrophoresis (native-PAGE).
View Article and Find Full Text PDFPlants (Basel)
January 2025
College of Ecological Engineering, Guizhou University of Engineering Science, Bijie 551700, China.
Exploring the changes in plant functional traits and their relationship with the environment in karst climax communities across different latitudes can enhance our understanding of how these communities respond to environmental gradients. In this study, we focus on climax karst climax plant communities in Guizhou Province, China. We selected three sample sites located at varying latitudes and analyzed the variations in functional traits of the plant communities at these latitudes.
View Article and Find Full Text PDFNutrients
January 2025
Department of Food Science and Nutrition, School of Environment, University of Aegean, 81400 Myrina, Lemnos, Greece.
Background/objectives: The COVID-19 pandemic has led to detrimental effects on diverse aspects of the mental and physical health of the general population worldwide. The elderly are more susceptible to COVID-19 infection compared to younger age groups. In this aspect, the purpose of the current survey is to evaluate the effect of the COVID-19 pandemic on the interrelationships among the sociodemographic and anthropometric characteristics, depressive behavior, quality of life, cognition status, physical activity and nutritional status of older adults.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!
© LitMetric 2025. All rights reserved.