Looking for a high-efficiency, durabile, and low-cost dual-functional oxygen electrocatalyst as the air electrode catalyst in rechargeable zinc-air batteries (ZABs) is urgently desirable but faces many challenges. Herein, we propose the preparation strategy of effectively using a bifunctional electrocatalyst (Fe-N/C) based on the zeolite imidazole organic framework-8 (ZIF-8) as the template agent, with surface modification coated by ferrocene (Fc) molecules followed by pyrolysis at high temperature under inert atmosphere. Benefiting from the surface modification of ZIF-8 with Fc molecules, more abundant multiple catalytic Fe/Fe-N/FeC sites with high intrinsic activity are derived, the resultant Fe-N/C exhibits excellent potential gap (Δ = 0.63 V) and durability, which is obviously superior to the Pt/C + IrO benchmark (Δ = 0.77 V) and other state-of-the-art electrocatalysts. Furthermore, the assembled rechargeable ZABs employing the Fe-N/C as an air-electrode show a reduced charging-discharging potential difference of 0.603 V, high power density of 214.8 mW cm, and long-term cycling stability of more than 290 h at 2.0 mA cm. Therefore, this work presents a feasible strategy to prepare a high-efficiency and durability ORR/OER bifunctional electrocatalyst toward high performance ZABs and next-generation energy storage devices.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.1c17151 | DOI Listing |
ACS Nano
January 2025
Department of Materials Science and Engineering, National University of Singapore, Singapore 117575, Singapore.
Electrochemical water splitting is a promising method for generating green hydrogen gas, offering a sustainable approach to addressing global energy challenges. However, the sluggish kinetics of the anodic oxygen evolution reaction (OER) poses a great obstacle to its practical application. Recently, increasing attention has been focused on introducing various external stimuli to modify the OER process.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Environmental Engineering, Kwangwoon University, Seoul 01897, Republic of Korea.
The advancement of highly efficient and cost-effective electrocatalysts for electrochemical water splitting, along with the development of triboelectric nanogenerators (TENGs), is crucial for sustainable energy generation and harvesting. In this study, a novel hybrid composite by integrating graphitic carbon nitride (GCN) with an earth-abundant FeMg-layered double hydroxide (LDH) (GCN@FeMg-LDH) was synthesized by the hydrothermal approach. Under controlled conditions, with optimized concentrations of metal ions and GCN, the fabricated electrode, GCN@FeMg-LDH demonstrated remarkably low overpotentials of 0.
View Article and Find Full Text PDFInorg Chem
January 2025
Key Laboratory of Polymer Materials of Gansu Province, Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, Gansu, China.
Efficient and stable nonprecious metal-based oxygen evolution reaction (OER) electrocatalysts are pivotal for water electrolysis technology. Herein, we are reporting an effective strategy for fabricating efficient Co-based OER electrocatalysts by low-level Fe doping in CoMoO to boost surface reconstruction and electronic modulation, which resulted in excellent OER electroactivity consequently. Our findings reveal that a mere 5.
View Article and Find Full Text PDFNanoscale Adv
January 2025
Department of Chemistry, Quaid-i-Azam University Islamabad-45320 Pakistan
Research on water splitting is paramount for developing low-carbon alternative energy sources. Nevertheless, creating an efficient, cost-effective, and bifunctional electrocatalyst that facilitates both the oxygen evolution reaction (OER) and the hydrogen evolution reaction (HER) remains an elusive goal. In this work, we report a novel hybrid nanostructured electrocatalyst by combining and pyrolyzing MXene, MIL-53(Fe), and ZIF-67.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Helmholtz-Institute Erlangen-Nürnberg for Renewable Energy (IET-2), Forschungszentrum Jülich, 91058 Erlangen, Germany.
Recently, cobalt-based oxides have received considerable attention as an alternative to expensive and scarce iridium for catalyzing the oxygen evolution reaction (OER) under acidic conditions. Although the reported materials demonstrate promising durability, they are not entirely intact, calling for fundamental research efforts to understand the processes governing the degradation of such catalysts. To this end, this work studies the dissolution mechanism of a model CoO porous catalyst under different electrochemical conditions using online inductively coupled plasma mass spectrometry (online ICP-MS), identical location scanning transmission electron microscopy (IL-STEM), and differential electrochemical mass spectrometry (DEMS).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!