We report an on-chip platform for low-intensity pulsed ultrasound (LIPUS) stimulation of cells directly cultured on a biocompatible surface of a transparent ultrasound transducer (TUT) fabricated using lithium niobate. The high light transmittance (>80%) and compact size (3 mm × 3 mm × 2 mm) of TUTs allowed easy integration with powerful optical microscopy techniques with no additional acoustic coupling and risk for contamination. TUTs were excited with varying acoustic excitation parameters (voltage amplitude and duty cycle) and resulting live cell calcium signaling was simultaneously imaged using time-lapse confocal microscopy, while the temperature change was measured by a thermocouple. Quantitative single-cell fluorescence analysis revealed the dynamic calcium signaling responses and together with the temperature measurements elucidated the optimal stimulation parameters for non-thermal and thermal effects. The fluorescence change profile was distinct from the recorded temperature change (<1 degree Celsius) profile under LIPUS treatment conditions. Cell dead assay results confirmed cells remain viable after the LIPUS treatment. These results confirmed that the TUT platform enables controllable, safe, high-throughput, and uniform mechanical stimulation of all plated cells. The on-chip LIPUS stimulation using TUTs has the potential to attract several and biomedical applications such as controlling stem cell differentiation and proliferation, studying biomechanical properties of cancer cells, and gaining fundamental insights into mechanotransduction pathways when integrated with state-of-the-art high-speed and high-resolution microscopy techniques.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d1lc00667c | DOI Listing |
J Cell Mol Med
January 2025
Ataturk Vocational School of Health Services, Department of Medical Laboratory Techniques, Afyonkarahisar Health Sciences University, Afyonkarahisar, Turkey.
The development and progression of osteoarthritis (OA) are believed to involve inflammation. This study aimed to investigate the effects of applying therapeutic ultrasound (US) to human osteoarthritic chondrocytes in continuous and pulsed modes on cell proliferation and proinflammatory cytokine levels. Human osteoarthritic chondrocytes (HC-OA 402OA-05a) were proliferated in appropriate media and then seeded into culture plates.
View Article and Find Full Text PDFUltrasonics
January 2025
College of Aerospace Engineering, Chongqing University, Chongqing 400044, China. Electronic address:
This study delves into the feasibility of leveraging quasi-static component (QSC) generation during primary Lamb wave propagation to discern subtle alterations in the interfacial properties of a two-layered plate. Unlike the second-harmonic generation of Lamb waves, QSC generation doesn't necessitate precise phase-velocity matching but rather requires an approximate matching of group velocities to ensure the emergence of cumulative growth effects. This unique characteristic empowers the QSC-based nonlinear ultrasonic method to effectively surmount the limitations associated with inherent dispersion and multimode traits of Lamb wave propagation.
View Article and Find Full Text PDFEur Radiol
January 2025
Department of Information Technology, Uppsala University, 75237, Uppsala, Sweden.
Objectives: The aim is to assess the feasibility and accuracy of a novel quantitative ultrasound (US) method based on global speed-of-sound (g-SoS) measurement using conventional US machines, for breast density assessment in comparison to mammographic ACR (m-ACR) categories.
Materials And Methods: In a prospective study, g-SoS was assessed in the upper-outer breast quadrant of 100 women, with 92 of them also having m-ACR assessed by two radiologists across the entire breast. For g-SoS, ultrasonic waves were transmitted from varying transducer locations and the image misalignments between these were then related analytically to breast SoS.
Sensors (Basel)
January 2025
Key Laboratory of Testing Technology for Manufacturing Process MOE, Southwest University of Science and Technology, Mianyang 621010, China.
The directivity of the quasi-static component (QSC) is quantitatively investigated for evaluating the orientation of a micro-crack buried in a thin solid plate using the numerical simulation method. Based on the bilinear stress-strain constitutive model, a three-dimensional (3D) finite element model (FEM) is built for investigating the nonlinear interaction between primary Lamb waves and the micro-crack. When the primary Lamb waves at A0 mode impinge on the micro-crack, under the modulation of the contact acoustic nonlinearity (CAN), the micro-crack itself will induce QSC.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Institute of Fundamental Technological Research, Polish Academy of Sciences, ul. Pawińskiego 5B, 02-106 Warsaw, Poland.
In this paper, we demonstrate that torsional surface elastic waves can propagate along the curved surface of a metamaterial elastic rod (cylinder) embedded in a conventional elastic medium. The crucial parameter of the metamaterial rod is its elastic compliance s44(1)ω, which varies as a function of frequency ω analogously to the dielectric function εω in Drude's model of metals. As a consequence, the elastic compliance s44(1)ω can take negative values s44(1)ω<0 as a function of frequency ω.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!