Molecular docking and simulation studies of synthetic protease inhibitors against COVID-19: a computational study.

J Biomol Struct Dyn

Chemistry of Natural and Microbial Products, Pharmaceutical Industry Research Division, National Research Center, Cairo, Egypt.

Published: December 2022

COVID-19 is the most recent threat to global health. Many people preferred treatment in case of infection instead of vaccination. The inhibition of viral replication is a good strategy for the treatment of COVID-19 infection. 3CLpro and PLpro are two important viral proteases responsible for proteolysis, infection, and replication of the virus. Therefore, targeting of these two enzymes is an attractive way to deal with COVID-19. The aim of this study was to screen some synthetic protease inhibitors to determine an appropriate hit molecule against COVID-19 using molecular docking and molecular dynamic simulations. The strategy depends on docking existing synthetic compounds mostly HIV protease inhibitors against two COVID-19 proteases to identify promising drugs for the treatment of COVID-19. We used protein data bank to obtain the X-ray crystal structure of the most important COVID-19 proteases 3CL pro (PDB ID: 6M2N) and PL pro (PDB ID: 6WX4). In this conceptual context, an attempt has been made to suggest an in silico computational relationship between 50 synthetic protease inhibitors and COVID-19 proteases. Out of 50 screened compounds, the best docking scores were found for these five protease inhibitors BDBM7021, BDBM698, BDBM694, BDBM93239, BDBM700. A 100-ns MD simulation was carried out to assess the stability of COVID-19 proteases and inhibitors, revealing an average RMSD value of 0.7 and favorable binding free energy (MM-GBSA) for all complexes confirming their potency as powerful binders in the COVID-19 proteases' binding pocket. Furthermore, the current results must be confirmed using in- and in- antiviral methods.Communicated by Ramaswamy H. Sarma.

Download full-text PDF

Source
http://dx.doi.org/10.1080/07391102.2021.1997822DOI Listing

Publication Analysis

Top Keywords

protease inhibitors
20
covid-19 proteases
16
synthetic protease
12
inhibitors covid-19
12
covid-19
11
molecular docking
8
treatment covid-19
8
pro pdb
8
inhibitors
6
protease
5

Similar Publications

Triterpene esters from Uncaria rhynchophylla hooks as potent HIV-1 protease inhibitors and their molecular docking study.

Sci Rep

December 2024

Department of Pharmacognosy, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Korea.

Despite significant advancements with combination anti-retroviral agents, eradicating human immunodeficiency virus (HIV) remains a challenge due to adverse effects, adherence issues, and emerging viral resistance to existing therapies. This underscores the urgent need for safer, more effective drugs to combat resistant strains and advance acquired immunodeficiency syndrome (AIDS) therapeutics. Eight triterpene esters (1-8) were identified from Uncaria rhynchophylla hooks.

View Article and Find Full Text PDF

Since the pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was first reported from Wuhan, China, there has been a surge in scientific research to find a permanent cure for the disease. The main challenge in effective drug discovery is the continuously mutating nature of the SARS-CoV-2 virus. Thus, we have used the I-TASSER modeling to predict the structure of the SARS-CoV-2 viral envelope protein followed by combinatorial computational assessment to predict its putative potential small molecule inhibitors.

View Article and Find Full Text PDF

Clinical Rationale For Study: We have reported that intracerebral haemorrhage (ICH) of unknown cause at a young age is associated with lower prothrombin and factor VII and higher antithrombin activity, along with the formation of looser fibrin networks displaying enhanced lysability. Patients with mild-to-moderate bleeding of unknown cause have elevated levels of free plasma tissue factor pathway inhibitor alpha (fTFPIα), inhibiting the tissue factor-factor VII complex and prothrombinase.

Aim Of Study: We hypothesised that patients with an intracerebral haemorrhage (ICH) of unknown cause may also exhibit higher fTFPIα.

View Article and Find Full Text PDF

nsP2 Protease Inhibitor Blocks the Replication of New World Alphaviruses and Offer Protection in Mice.

ACS Infect Dis

December 2024

Chemistry and Biotechnology Science and Engineering Program, College of Science, The University of Alabama in Huntsville, Huntsville, Alabama 35899, United States.

New World alphaviruses, including Venezuelan equine encephalitis virus (VEEV), eastern equine encephalitis virus (EEEV), and western equine encephalitis virus (WEEV), are mosquito-transmitted viruses that cause disease in humans. These viruses are endemic to the western hemisphere, and disease in humans may lead to encephalitis and long-term neurological sequelae. There are currently no FDA-approved vaccines or antiviral therapeutics available for the prevention or treatment of diseases caused by these viruses.

View Article and Find Full Text PDF

Regulation of epidermal barrier function and pathogenesis of psoriasis by serine protease inhibitors.

Front Immunol

December 2024

Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital, Taiyuan, China.

Serine protease inhibitors (Serpins) are a protein superfamily of protease inhibitors that are thought to play a role in the regulation of inflammation, immunity, tumorigenesis, coagulation, blood pressure and cancer metastasis. Serpins is enriched in the skin and play a vital role in modulating the epidermal barrier and maintaining skin homeostasis. Psoriasis is a chronic inflammatory immune-mediated skin disease.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!