Internal Fragment Ions Disambiguate and Increase Identifications in Top-Down Proteomics.

J Proteome Res

Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States.

Published: December 2021

A large fraction of observed fragment ion intensity remains unidentified in top-down proteomics. The elucidation of these unknown fragment ions could enable researchers to identify additional proteoforms and reduce proteoform ambiguity in their analyses. Internal fragment ions have received considerable attention as a major source of these unidentified fragment ions. Internal fragments are product ions that contain neither protein terminus, in contrast with terminal ions that contain a single terminus. There are many more possible internal fragments than terminal fragments, and the resulting computational complexity has historically limited the application of internal fragment ions to low-complexity samples containing only one or a few proteins of interest. We implemented internal fragment ion functionality in MetaMorpheus to allow the proteome-wide annotation of internal fragment ions. MetaMorpheus first uses terminal fragment ions to identify putative proteoforms and then employs internal fragment ions to disambiguate similar proteoforms. In the analysis of mammalian cell lysates, we found that MetaMorpheus could disambiguate over half of its previously ambiguous proteoforms while also providing up to a 7% increase in proteoform-spectrum matches identified at a 1% false discovery rate.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8790932PMC
http://dx.doi.org/10.1021/acs.jproteome.1c00599DOI Listing

Publication Analysis

Top Keywords

fragment ions
32
internal fragment
24
ions
10
fragment
9
internal
8
ions disambiguate
8
top-down proteomics
8
fragment ion
8
internal fragments
8
disambiguate increase
4

Similar Publications

Comment on "Stability and degradation mechanism of (-)-epicatechin in thermal processing".

Food Chem

January 2025

Poznań University of Technology, Institute of Chemistry and Technical Electrochemistry, Berdychowo 4, 60-965 Poznań, Poland. Electronic address:

Catechins, due to their high antioxidant capacity, are ones of the most common ingredients of human diet (e.g. tea, fruits, cacao) of the well-known health benefit properties.

View Article and Find Full Text PDF

Sulfate and sulfonate compounds are extensively used as anionic surfactants in personal care products (PCPs), which might pose adverse potential to human health. However, available research mostly identified certain subsets of sulfated and sulfonated surfactants based on target analysis. In this study, we developed a comprehensive nontarget strategy for identification of sulfated and sulfonated surfactants in PCPs using UHPLCHRMS supplemented by an in-lab R script based on characteristic fragment ions and sulfur isotope patterns.

View Article and Find Full Text PDF

Variable relative biological effectiveness (RBE) of carbon radiotherapy may be calculated using several models, including the microdosimetric kinetic model (MKM), stochastic MKM (SMKM), repair-misrepair-fixation (RMF) model, and local effect model I (LEM), which have not been thoroughly compared. In this work, we compared how these four models handle carbon beam fragmentation, providing insight into where model differences arise. Monoenergetic and spread-out Bragg peak carbon beams incident on a water phantom were simulated using Monte Carlo.

View Article and Find Full Text PDF

Spontaneous cleavage reactions normally occur in vivo on amino acid peptide backbones, leading to fragmentation products that can have different physiological roles and toxicity, particularly when the substrate of the hydrolytic processes are neuronal peptides and proteins highly related to neurodegeneration. We report a hydrolytic study performed with the HPLC-MS technique at different temperatures (4 °C and 37 °C) on peptide fragments of different neuronal proteins (amyloid-β, tau, and α-synuclein) in physiological conditions in the presence of Cu and Zn ions, two metal ions found at millimolar concentrations in amyloid plaques. The coordination of these metal ions with these peptides significantly protects their backbones toward hydrolytic degradation, preserving the entire sequences over two weeks in solution, while the free peptides in the same buffer are fully fragmented after the same or even shorter incubation period.

View Article and Find Full Text PDF

The interaction of sodium phytate hydrate CHOP·xNa·yHO (phytNa) with Cu(OAc)·HO and 1,10-phenanthroline (phen) led to the anionic tetranuclear complex [Cu(HO)(phen)(phyt)]·2Na·2NH·32HO (), the structure of the latter was determined by X-ray diffraction analysis. The phytate is completely deprotonated; six phosphate fragments (with atoms P1-P6) are characterized by different spatial arrangements relative to the cyclohexane ring (1a5e conformation), which determines two different types of coordination to the complexing agents-P1 and P3, P4, and P6 have monodentate, while P2 and P5 are bidentately bound to Cu cations. The molecular structure of the anion complex is stabilized by a set of strong intramolecular hydrogen bonds involving coordinated water molecules.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!