The ultrafast frequency response supercapacitor is a promising candidate for alternating current line filtering. We report the fabrication of a special structured ionic liquid-based supercapacitor with an ultrafast response of only 1.5 ms. The three-dimensional aluminum (Al) foam coated with carbon layer (∼500 nm) serves as the novel, highly efficient electrode-current collector. The high porosity (95%) of Al foam allows the rapid ion diffusion and the as-obtained Al/C interface with atomic-level mixing allows the fast electron transfer, two crucial factors for ultrafast response. Hence, it possesses an excellent specific mass capacitance of 68 mF g at 120 Hz, as well as an ultrahigh rate of up to 3000 V s . The supercapacitors exhibit frequency modulation performance in the range of 20 kHz to 16 MHz. They exhibit the similar even better alternating current filtering performance, as compared to the commercial aluminum electrolytic capacitors, detected at 10 Hz, 60 Hz, 100 Hz and 1 M Hz. These results suggest that, although ILs have high viscosity and low ion mobility, the IL-based supercapacitor has a great potential to be used as a device for alternating current line filtering, as well as providing nonvolatile and nonflammability safety.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.1c15754DOI Listing

Publication Analysis

Top Keywords

alternating current
12
current filtering
12
ultrafast response
8
ultrafast
4
ultrafast nonvolatile
4
nonvolatile ionic
4
ionic liquids-based
4
liquids-based supercapacitors
4
supercapacitors foam-enhanced
4
foam-enhanced carbon
4

Similar Publications

Objective(s): Some forms of breast cancer such as triple-negative phenotype, are serious challenge because of high metastatic cases, high mortality and resistance to conventional therapy motivated the search for alternative treatment approaches. Nanomaterials are promising candidates and suitable alternatives for improving tumor and cancer cell treatments.

Materials And Methods: Biosynthesis of ZnO NPs by help of Berberis integerrima fruit extract, has been done.

View Article and Find Full Text PDF

Oncolytic measles virus-induced cell killing in radio-resistant and drug-resistant nasopharyngeal carcinoma.

Malays J Pathol

December 2024

Universiti Tunku Abdul Rahman, M. Kandiah Faculty of Medicine and Health Sciences, Department of Pre-clinical Sciences, Bandar Sungai Long, 43000, Kajang, Selangor, Malaysia.

Introduction: The current first-line therapy for nasopharyngeal carcinoma (NPC) is often associated with long-term complications. Oncolytic measles virus (MV) therapy offers a promising alternative to cancer therapy. This study aims to investigate the efficacy of MV in killing NPC cells in vitro, both with or without resistance to radiation and drug therapy.

View Article and Find Full Text PDF

Review of Applications of Microneedling in Melasma.

J Cosmet Dermatol

January 2025

Department of Dermatology, Peking University Shenzhen Hospital, Shenzhen, China.

Background: Melasma, a common skin pigmentation disease, can negatively impact patients' mental health, social interactions, and physical appearance. Although we now have several treatments accessible, such as medicines, chemical peels, and phototherapy, which can help ease symptoms to some extent, the requirement for a long-term effective and safe treatment for patients is far from met. In the face of this problem, microneedling, as an innovative treatment, provides a new avenue for treating melasma.

View Article and Find Full Text PDF

Advanced metabolic Engineering strategies for the sustainable production of free fatty acids and their derivatives using yeast.

J Biol Eng

December 2024

Department of Chemical Engineering (BK21 FOUR Integrated Engineering), Kyung Hee University, Yongin-si, Gyeonggi-do, 17104, Republic of Korea.

The biological production of lipids presents a sustainable method for generating fuels and chemicals. Recognized as safe and enhanced by advanced synthetic biology and metabolic engineering tools, yeasts are becoming versatile hosts for industrial applications. However, lipids accumulate predominantly as triacylglycerides in yeasts, which are suboptimal for industrial uses.

View Article and Find Full Text PDF

Microalgae for bioremediation: advances, challenges, and public perception on genetic engineering.

BMC Plant Biol

December 2024

Departamento de Bioquímica y Biología Molecular, Universidad de Córdoba, Campus Universitario de Rabanales, Ed. C6, Planta Baja, Córdoba, 14071, Spain.

The increase in the global population and industrial activities has led to an extensive use of water, the release of wastewater, and overall contamination of the environment. To address these issues, efficient treatment methods have been developed to decrease wastewater nutrient content and contaminants. Microalgae are a promising tool as a sustainable alternative to traditional wastewater treatment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!