Desmoplastic solid tumors are characterized by the rapid build-up of extracellular matrix (ECM) macromolecules, such as hyaluronic acid (HA). The resulting physiological barrier prevents the infiltration of immune cells and also impedes the delivery of anticancer agents. The development of a hypervesiculating Escherichia coli Nissle (ΔECHy) based tumor targeting bacterial system capable of distributing a fusion peptide, cytolysin A (ClyA)-hyaluronidase (Hy) via outer membrane vesicles (OMVs) is reported. The capability of targeting hypoxic tumors, manufacturing recombinant proteins in situ and the added advantage of an on-site OMV based distribution system makes the engineered bacterial vector a unique candidate for peptide delivery. The HA degrading potential of Hy for stromal modulation is combined with the cytolytic activity of ClyA followed by testing it within syngeneic cancer models. ΔECHy is combined with immune checkpoint antibodies and tyrosine kinase inhibitors (TKIs) to demonstrate that remodeling the tumor stroma results in the improvement of immunotherapy outcomes and enhancing the efficacy of biological signaling inhibitors. The biocompatibility of ΔECHy is also investigated to show that the engineered bacteria are effectively cleared, elicit minimal inflammatory and immune responses, and therefore could be a reliable candidate as a live biotherapeutic.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8770579 | PMC |
http://dx.doi.org/10.1002/adhm.202101487 | DOI Listing |
Cytotechnology
February 2025
Laboratory LR11ES45, Research Group"Biotechnology and Pathology", National School of Engineers of Sfax, Sfax, Tunisia.
The clinical evidence, complications and the pathogenesis of COVID-19 are not clearly understood. In COVID-19 patients, cellular immune response biomarkers and oxidative stress parameters have been used as gravity markers. Indeed, oxidative stress has been proposed to play an essential role in the genesis of COVID-19.
View Article and Find Full Text PDFAnn Med
December 2025
Department of Clinical Pharmacology, Institute of Laboratory Medicine, University Hospital Ostrava, Ostrava, Czech Republic.
Introduction: It is hypothesized that systemically administered antibiotics penetrate wound sites more effectively during negative pressure wound therapy (NPWT). However, there is a lack of clinical data from patients who receive NPWT for deep sternal wound infection (DSWI) after open-heart surgery. Here, we evaluated vancomycin penetration into exudate in this patient group.
View Article and Find Full Text PDFBiotechnol J
December 2024
Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universitat Politècnica de Valencia-Consejo Superior de Investigaciones Científicas, Valencia, Spain.
Virus-induced gene silencing (VIGS) represents a particularly relevant tool in agricultural species for studying gene functionality. This study presents a novel approach for utilizing viruses belonging to the 30K family of movement proteins (MPs) as VIGS vectors. The method described here employs smaller inserts (54 bp or less) than those commonly used (100-500 bp).
View Article and Find Full Text PDFBiotechnol J
December 2024
School of Pharmacy, Binzhou Medical University, Yantai, China.
Programmed death protein-ligand 1 (PD-L1) inhibitors demonstrate significant antitumor efficacy by modulating T-cell activity and inhibiting the PD-1/PD-L1 pathway, thus enhancing immune responses. Despite their robust effects, systemic administration of these inhibitors is linked to severe immune toxicity. To address this issue, we engineered a strain, REP, which releases PD-L1 nanoantibodies (PD-L1nb) to treat breast cancer and attenuate immunotherapy-related side effects.
View Article and Find Full Text PDFNanoscale
December 2024
School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang 71000, China.
Infectious bacteria pose an increasing threat to public health, and hospital-acquired bacterial infections remain a significant challenge for wound healing. In this study, we developed an advanced nanoplatform utilizing copper doped magnetic vortex nanoring coated with polydopamine (Cu-MVNp) based nanotherapeutics for bacterial infection tri-therapy. This multifunctional nanoplatform exhibits remarkable dual-stimulus thermogenic capabilities and Fenton-like peroxidase activity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!