Defects are ubiquitous in 2D materials and can affect the structure and properties of the materials and also introduce new functionalities. Methods to adjust the structure and density of defects during bottom-up synthesis are required to control the growth of 2D materials with tailored optical and electronic properties. Here, the authors present an Au-assisted chemical vapor deposition approach to selectively form S and S2 antisite defects, whereby one or two sulfur atoms substitute for a tungsten atom in WS monolayers. Guided by first-principles calculations, they describe a new method that can maintain tungsten-poor growth conditions relative to sulfur via the low solubility of W atoms in a gold/W alloy, thereby significantly reducing the formation energy of the antisite defects during the growth of WS . The atomic structure and composition of the antisite defects are unambiguously identified by Z-contrast scanning transmission electron microscopy and electron energy-loss spectroscopy, and their total concentration is statistically determined, with levels up to ≈5.0%. Scanning tunneling microscopy/spectroscopy measurements and first-principles calculations further verified these antisite defects and revealed the localized defect states in the bandgap of WS monolayers. This bottom-up synthesis method to form antisite defects should apply in the synthesis of other 2D materials.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/adma.202106674 | DOI Listing |
ACS Nano
January 2025
State Key Laboratory of Wide-Bandgap Semiconductor Devices and Integrated Technology, Faculty of Integrated Circuit, Xidian University, 710071 Xi'an, China.
Flexible perovskite solar cells (FPSCs) have advanced significantly because of their excellent power-per-weight performance and affordable manufacturing costs. The unsatisfactory efficiency and mechanical stability of FPSCs are bottleneck challenges that limit their application. Here, we explore the use of octylammonium acetate (OAAc) with a long, intrinsic, flexible molecular chain on perovskite films for surface adhesion and mechanical releasing.
View Article and Find Full Text PDFACS Omega
January 2025
Department of Physics, The Ohio State University, Columbus, Ohio 43210, United States.
Piezovoltages generated by ZnO nano/microwire bending and strain enable electronic biogenerators that harvest human body movement to power-implanted biomedical devices. Currently, low voltages generated by these biogenerators limit their use to replace today's biomedical batteries. Electrically charged native point defects inside ZnO microwires can control these macroscopic piezo voltages, generating transverse electric fields that couple with strained wires' lengthwise piezoelectric fields so they redistribute spatially and change voltage output.
View Article and Find Full Text PDFACS Omega
January 2025
Department of Mechanical Engineering, Virginia Tech, Blacksburg, 635 Prices Fork Road, Blacksburg, Virginia 24061, United States.
In this study, a group of aluminum-doped lithium iron phosphate (LFP) with varying dopant concentrations (Li Al FePO/C, where = 0.01-0.03) was synthesized via a solid-state reaction.
View Article and Find Full Text PDFDalton Trans
January 2025
Department of Nanoengineering, Joint School of Nanoscience and Nanoengineering, North Carolina A&T State University, 2907 East Gate City Boulevard, Greensboro, NC 27401, USA.
Facile phase selective synthesis of copper antimony sulphide (CAS) nanostructures is important because of their tunable photoconductive and electrochemical properties. In this study, off-stoichiometric famatinite phase CAS (CAS) quasi-spherical and quasi-hexagonal colloidal nanostructures (including nanosheets) of sizes, 2.4-18.
View Article and Find Full Text PDFChemphyschem
January 2025
Department of Physics, Zhejiang Normal University, Jinhua, Zhejiang, 321004, P. R. China.
Undesirable loss of open-circuit voltage and current of metal halide perovskite (MHP) solar cells are closely associated with defects, so theoretical calculations have been often performed to scrutinize the nature of defects in bulk of MHPs. Yet, exploring the properties of defects at surfaces of MHPs is severely lacking given the complexity of the surface defects with high concentrations. In this study, I (Pb) antisite defects, namely one Pb (I) site being occupied by one I (Pb) atom at the surfaces of the FAPbI (FA=CH(NH)) material, are found to create electron (hole) traps when the surfaces with I (Pb) antisite defects are negatively (positively) charged.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!